Details
Zusammenfassung: <jats:p>Numerous studies, often performed on avian embryos, have implicated retinoic acid (RA) in the control of limb bud growth and patterning. Here we have investigated whether the lack of endogenous RA synthesis affects limb morphogenesis in mutant mouse embryos deficient for the retinaldehyde dehydrogenase 2 (Raldh2/Aldh1a2). These mutants, which have no detectable embryonic RA except in the developing retina, die at E9.5-E10 without any evidence of limb bud formation, but maternal RA supplementation through oral gavage from E7.5 can extend their survival. Such survivors exhibit highly reduced forelimb rudiments, but apparently normal hindlimbs. By providing RA within maternal food, we found both a stage- and dose-dependency for rescue of forelimb growth and patterning. Following RA supplementation from E7.5 to 8.5, mutant forelimbs are markedly hypoplastic and lack anteroposterior (AP) patterning, with a single medial cartilage and 1-2 digit rudiments. RA provided until E9.5 significantly rescues forelimb growth, but cannot restore normal AP patterning. Increasing the RA dose rescues the hypodactyly, but leads to lack of asymmetry of the digit pattern, with abnormally long first digit or symmetrical polydactyly. Mutant forelimb buds are characterized by lack of expression or abnormal distal distribution of Sonic hedgehog (Shh) transcripts, sometimes with highest expression anteriorly. Downregulation or ectopic anterior expression of Fgf4 is also seen. As a result, genes such as Bmp2 or Hoxd genes are expressed symmetrically along the AP axis of the forelimb buds, and/or later, of the autopod. We suggest that RA signaling cooperates with a posteriorly restricted factor such as dHand, to generate a functional zone of polarizing activity (ZPA).</jats:p>
Umfang: 3563-3574
ISSN: 1477-9129
0950-1991
DOI: 10.1242/dev.129.15.3563