author_facet Kim, B. S.
Kyung, W. S.
Seo, J. J.
Kwon, J. Y.
Denlinger, J. D.
Kim, C.
Park, S. R.
Kim, B. S.
Kyung, W. S.
Seo, J. J.
Kwon, J. Y.
Denlinger, J. D.
Kim, C.
Park, S. R.
author Kim, B. S.
Kyung, W. S.
Seo, J. J.
Kwon, J. Y.
Denlinger, J. D.
Kim, C.
Park, S. R.
spellingShingle Kim, B. S.
Kyung, W. S.
Seo, J. J.
Kwon, J. Y.
Denlinger, J. D.
Kim, C.
Park, S. R.
Scientific Reports
Possible electric field induced indirect to direct band gap transition in MoSe2
Multidisciplinary
author_sort kim, b. s.
spelling Kim, B. S. Kyung, W. S. Seo, J. J. Kwon, J. Y. Denlinger, J. D. Kim, C. Park, S. R. 2045-2322 Springer Science and Business Media LLC Multidisciplinary http://dx.doi.org/10.1038/s41598-017-05613-5 <jats:title>Abstract</jats:title><jats:p>Direct band-gap semiconductors play the central role in optoelectronics. In this regard, monolayer (ML) MX<jats:sub>2</jats:sub> (M = Mo, W; X = S, Se) has drawn increasing attention due to its novel optoelectronic properties stemming from the direct band-gap and valley degeneracy. Unfortunately, the more practically usable bulk and multilayer MX<jats:sub>2</jats:sub> have indirect-gaps. It is thus highly desired to turn bulk and multilayer MX<jats:sub>2</jats:sub> into direct band-gap semiconductors by controlling external parameters. Here, we report angle-resolved photoemission spectroscopy (ARPES) results from Rb dosed MoSe<jats:sub>2</jats:sub> that suggest possibility for electric field induced indirect to direct band-gap transition in bulk MoSe<jats:sub>2</jats:sub>. The Rb concentration dependent data show detailed evolution of the band-gap, approaching a direct band-gap state. As ionized Rb layer on the surface provides a strong electric field perpendicular to the surface within a few surface layers of MoSe<jats:sub>2</jats:sub>, our data suggest that direct band-gap in MoSe<jats:sub>2</jats:sub> can be achieved if a strong electric field is applied, which is a step towards optoelectronic application of bulk materials.</jats:p> Possible electric field induced indirect to direct band gap transition in MoSe2 Scientific Reports
doi_str_mv 10.1038/s41598-017-05613-5
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE1OTgtMDE3LTA1NjEzLTU
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE1OTgtMDE3LTA1NjEzLTU
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint Springer Science and Business Media LLC, 2017
imprint_str_mv Springer Science and Business Media LLC, 2017
issn 2045-2322
issn_str_mv 2045-2322
language English
mega_collection Springer Science and Business Media LLC (CrossRef)
match_str kim2017possibleelectricfieldinducedindirecttodirectbandgaptransitioninmose2
publishDateSort 2017
publisher Springer Science and Business Media LLC
recordtype ai
record_format ai
series Scientific Reports
source_id 49
title Possible electric field induced indirect to direct band gap transition in MoSe2
title_unstemmed Possible electric field induced indirect to direct band gap transition in MoSe2
title_full Possible electric field induced indirect to direct band gap transition in MoSe2
title_fullStr Possible electric field induced indirect to direct band gap transition in MoSe2
title_full_unstemmed Possible electric field induced indirect to direct band gap transition in MoSe2
title_short Possible electric field induced indirect to direct band gap transition in MoSe2
title_sort possible electric field induced indirect to direct band gap transition in mose2
topic Multidisciplinary
url http://dx.doi.org/10.1038/s41598-017-05613-5
publishDate 2017
physical
description <jats:title>Abstract</jats:title><jats:p>Direct band-gap semiconductors play the central role in optoelectronics. In this regard, monolayer (ML) MX<jats:sub>2</jats:sub> (M = Mo, W; X = S, Se) has drawn increasing attention due to its novel optoelectronic properties stemming from the direct band-gap and valley degeneracy. Unfortunately, the more practically usable bulk and multilayer MX<jats:sub>2</jats:sub> have indirect-gaps. It is thus highly desired to turn bulk and multilayer MX<jats:sub>2</jats:sub> into direct band-gap semiconductors by controlling external parameters. Here, we report angle-resolved photoemission spectroscopy (ARPES) results from Rb dosed MoSe<jats:sub>2</jats:sub> that suggest possibility for electric field induced indirect to direct band-gap transition in bulk MoSe<jats:sub>2</jats:sub>. The Rb concentration dependent data show detailed evolution of the band-gap, approaching a direct band-gap state. As ionized Rb layer on the surface provides a strong electric field perpendicular to the surface within a few surface layers of MoSe<jats:sub>2</jats:sub>, our data suggest that direct band-gap in MoSe<jats:sub>2</jats:sub> can be achieved if a strong electric field is applied, which is a step towards optoelectronic application of bulk materials.</jats:p>
container_issue 1
container_start_page 0
container_title Scientific Reports
container_volume 7
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792347834459095044
geogr_code not assigned
last_indexed 2024-03-01T18:01:34.442Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Possible+electric+field+induced+indirect+to+direct+band+gap+transition+in+MoSe2&rft.date=2017-07-12&genre=article&issn=2045-2322&volume=7&issue=1&jtitle=Scientific+Reports&atitle=Possible+electric+field+induced+indirect+to+direct+band+gap+transition+in+MoSe2&aulast=Park&aufirst=S.+R.&rft_id=info%3Adoi%2F10.1038%2Fs41598-017-05613-5&rft.language%5B0%5D=eng
SOLR
_version_ 1792347834459095044
author Kim, B. S., Kyung, W. S., Seo, J. J., Kwon, J. Y., Denlinger, J. D., Kim, C., Park, S. R.
author_facet Kim, B. S., Kyung, W. S., Seo, J. J., Kwon, J. Y., Denlinger, J. D., Kim, C., Park, S. R., Kim, B. S., Kyung, W. S., Seo, J. J., Kwon, J. Y., Denlinger, J. D., Kim, C., Park, S. R.
author_sort kim, b. s.
container_issue 1
container_start_page 0
container_title Scientific Reports
container_volume 7
description <jats:title>Abstract</jats:title><jats:p>Direct band-gap semiconductors play the central role in optoelectronics. In this regard, monolayer (ML) MX<jats:sub>2</jats:sub> (M = Mo, W; X = S, Se) has drawn increasing attention due to its novel optoelectronic properties stemming from the direct band-gap and valley degeneracy. Unfortunately, the more practically usable bulk and multilayer MX<jats:sub>2</jats:sub> have indirect-gaps. It is thus highly desired to turn bulk and multilayer MX<jats:sub>2</jats:sub> into direct band-gap semiconductors by controlling external parameters. Here, we report angle-resolved photoemission spectroscopy (ARPES) results from Rb dosed MoSe<jats:sub>2</jats:sub> that suggest possibility for electric field induced indirect to direct band-gap transition in bulk MoSe<jats:sub>2</jats:sub>. The Rb concentration dependent data show detailed evolution of the band-gap, approaching a direct band-gap state. As ionized Rb layer on the surface provides a strong electric field perpendicular to the surface within a few surface layers of MoSe<jats:sub>2</jats:sub>, our data suggest that direct band-gap in MoSe<jats:sub>2</jats:sub> can be achieved if a strong electric field is applied, which is a step towards optoelectronic application of bulk materials.</jats:p>
doi_str_mv 10.1038/s41598-017-05613-5
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE1OTgtMDE3LTA1NjEzLTU
imprint Springer Science and Business Media LLC, 2017
imprint_str_mv Springer Science and Business Media LLC, 2017
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 2045-2322
issn_str_mv 2045-2322
language English
last_indexed 2024-03-01T18:01:34.442Z
match_str kim2017possibleelectricfieldinducedindirecttodirectbandgaptransitioninmose2
mega_collection Springer Science and Business Media LLC (CrossRef)
physical
publishDate 2017
publishDateSort 2017
publisher Springer Science and Business Media LLC
record_format ai
recordtype ai
series Scientific Reports
source_id 49
spelling Kim, B. S. Kyung, W. S. Seo, J. J. Kwon, J. Y. Denlinger, J. D. Kim, C. Park, S. R. 2045-2322 Springer Science and Business Media LLC Multidisciplinary http://dx.doi.org/10.1038/s41598-017-05613-5 <jats:title>Abstract</jats:title><jats:p>Direct band-gap semiconductors play the central role in optoelectronics. In this regard, monolayer (ML) MX<jats:sub>2</jats:sub> (M = Mo, W; X = S, Se) has drawn increasing attention due to its novel optoelectronic properties stemming from the direct band-gap and valley degeneracy. Unfortunately, the more practically usable bulk and multilayer MX<jats:sub>2</jats:sub> have indirect-gaps. It is thus highly desired to turn bulk and multilayer MX<jats:sub>2</jats:sub> into direct band-gap semiconductors by controlling external parameters. Here, we report angle-resolved photoemission spectroscopy (ARPES) results from Rb dosed MoSe<jats:sub>2</jats:sub> that suggest possibility for electric field induced indirect to direct band-gap transition in bulk MoSe<jats:sub>2</jats:sub>. The Rb concentration dependent data show detailed evolution of the band-gap, approaching a direct band-gap state. As ionized Rb layer on the surface provides a strong electric field perpendicular to the surface within a few surface layers of MoSe<jats:sub>2</jats:sub>, our data suggest that direct band-gap in MoSe<jats:sub>2</jats:sub> can be achieved if a strong electric field is applied, which is a step towards optoelectronic application of bulk materials.</jats:p> Possible electric field induced indirect to direct band gap transition in MoSe2 Scientific Reports
spellingShingle Kim, B. S., Kyung, W. S., Seo, J. J., Kwon, J. Y., Denlinger, J. D., Kim, C., Park, S. R., Scientific Reports, Possible electric field induced indirect to direct band gap transition in MoSe2, Multidisciplinary
title Possible electric field induced indirect to direct band gap transition in MoSe2
title_full Possible electric field induced indirect to direct band gap transition in MoSe2
title_fullStr Possible electric field induced indirect to direct band gap transition in MoSe2
title_full_unstemmed Possible electric field induced indirect to direct band gap transition in MoSe2
title_short Possible electric field induced indirect to direct band gap transition in MoSe2
title_sort possible electric field induced indirect to direct band gap transition in mose2
title_unstemmed Possible electric field induced indirect to direct band gap transition in MoSe2
topic Multidisciplinary
url http://dx.doi.org/10.1038/s41598-017-05613-5