Eintrag weiter verarbeiten

Climate impact mitigation potential of formation flight

Gespeichert in:

Veröffentlicht in: Aerospace Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
Personen und Körperschaften: Marks, Tobias (VerfasserIn), Dahlmann, Katrin (VerfasserIn), Grewe, Volker (VerfasserIn), Gollnick, Volker (VerfasserIn), Linke, Florian (VerfasserIn), Matthes, Sigrun (VerfasserIn), Stumpf, Eike (VerfasserIn), Swaid, Majed (VerfasserIn), Unterstraßer, Simon (VerfasserIn), Yamashita, Hiroshi (VerfasserIn), Zumegen, Clemens (VerfasserIn), Technische Universität Hamburg (Sonstige), Institut für Lufttransportsysteme (Sonstige)
Titel: Climate impact mitigation potential of formation flight/ Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
8 January 2021
Gesamtaufnahme: : Aerospace, Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
, volume:8
Schlagwörter:
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
LEADER 06854naa a2201045 4500
001 0-1745287590
003 DE-627
005 20210122121456.0
007 cr uuu---uuuuu
008 210122s2021 xx |||||o 00| ||eng c
024 7 |a urn:nbn:de:gbv:830-882.0120104  |2 urn 
024 7 |a 10.15480/882.3236  |2 doi 
024 7 |a 10.3390/aerospace8010014  |2 doi 
024 7 |a 11420/8384  |2 hdl 
035 |a (DE-627)1745287590 
035 |a (DE-599)KXP1745287590 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 600: Technik 
082 0 |a 620: Ingenieurwissenschaften 
100 1 |a Marks, Tobias  |e VerfasserIn  |0 (DE-588)1192487885  |0 (DE-627)1671042247  |4 aut 
245 1 0 |a Climate impact mitigation potential of formation flight  |c Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen 
264 1 |c 8 January 2021 
300 |b Illustrationen, Diagramme 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Sonstige Körperschaft: Technische Universität Hamburg 
500 |a Sonstige Körperschaft: Technische Universität Hamburg, Institut für Lufttransportsysteme 
506 0 |q DE-830  |a Open Access  |e Controlled Vocabulary for Access Rights  |u http://purl.org/coar/access_right/c_abf2 
520 |a The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft’s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world’s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5–6%. 
540 |q DE-830  |a Namensnennung 4.0 International  |f CC BY 4.0  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
650 7 |a aircraft wake-surfing  |2 DSpace 
650 7 |a formation flight  |2 DSpace 
650 7 |a air traffic management  |2 DSpace 
650 7 |a fuel savings  |2 DSpace 
650 7 |a climate impact  |2 DSpace 
700 1 |a Dahlmann, Katrin  |d 1982-  |e VerfasserIn  |0 (DE-588)1021754773  |0 (DE-627)715831550  |0 (DE-576)364301414  |4 aut 
700 1 |a Grewe, Volker  |e VerfasserIn  |0 (DE-588)173110479  |0 (DE-627)698033434  |0 (DE-576)133962172  |4 aut 
700 1 |a Gollnick, Volker  |d 1964-  |e VerfasserIn  |0 (DE-588)129040525  |0 (DE-627)387890874  |0 (DE-576)297462385  |4 aut 
700 1 |a Linke, Florian  |e VerfasserIn  |0 (DE-588)1105675297  |0 (DE-627)862743052  |0 (DE-576)473669609  |4 aut 
700 1 |a Matthes, Sigrun  |d 1970-  |e VerfasserIn  |0 (DE-588)128551658  |0 (DE-627)374716056  |0 (DE-576)187224005  |4 aut 
700 1 |a Stumpf, Eike  |d 1971-  |e VerfasserIn  |0 (DE-588)128856084  |0 (DE-627)383660106  |0 (DE-576)188426523  |4 aut 
700 1 |a Swaid, Majed  |e VerfasserIn  |0 (DE-588)1209282607  |0 (DE-627)1696929288  |4 aut 
700 1 |a Unterstraßer, Simon  |d 1979-  |e VerfasserIn  |0 (DE-588)137182384  |0 (DE-627)590353977  |0 (DE-576)302390421  |4 aut 
700 1 |a Yamashita, Hiroshi  |e VerfasserIn  |4 aut 
700 1 |a Zumegen, Clemens  |e VerfasserIn  |4 aut 
710 2 |a Technische Universität Hamburg  |0 (DE-588)1112763473  |0 (DE-627)866918418  |0 (DE-576)476770564  |4 oth 
710 2 |a Institut für Lufttransportsysteme  |0 (DE-588)113826007X  |0 (DE-627)895590646  |0 (DE-576)492453209  |4 oth 
773 0 8 |i Enthalten in  |t Aerospace  |d Basel : MDPI, 2014  |g Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten  |h Online-Ressource  |w (DE-627)778375048  |w (DE-600)2756091-0  |w (DE-576)401032795  |x 2226-4310  |7 nnns 
773 1 8 |g volume:8  |g year:2021  |g number:1  |g extent:18 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:gbv:830-882.0120104  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://doi.org/10.15480/882.3236  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://hdl.handle.net/11420/8384  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://doi.org/10.3390/aerospace8010014  |x Resolving-System 
935 |i DSpace 
936 u w |d 8  |j 2021  |e 1  |g 18  |y Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten 
951 |a AR 
856 4 0 |u https://doi.org/10.3390/aerospace8010014  |9 LFER 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:gbv:830-882.0120104  |9 LFER 
852 |a LFER  |z 2021-02-09T19:38:02Z 
970 |c OD 
971 |c EBOOK 
972 |c EBOOK 
973 |c Aufsatz 
935 |a lfer 
900 |a Grewe, V. 
900 |a Stumpf, E. 
900 |a Dahlmann, K. 
900 |a Obermaier, Katrin 
910 |a Hamburg University of Technology 
910 |a Technical University 
910 |a Hamburg 
910 |a Université de Technologie de Hambourg 
910 |a TU Hamburg 
910 |a TUHH 
910 |a University of Technology 
910 |a Technische Universität Hamburg-Harburg 
910 |a Technische Universität Hamburg 
910 |a Studiendekanat Maschinenbau 
910 |a Institut für Lufttransportsysteme 
910 |a Institute of Air Transportation Systems 
910 |a Institut M-28 
910 |a ILT 
910 |a Deutsches Zentrum für Luft- und Raumfahrt 
910 |a Lufttransportsysteme 
910 |a DLR-Lufttransportsysteme 
951 |b XA-DE 
980 |a 1745287590  |b 0  |k 1745287590  |c lfer 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Climate+impact+mitigation+potential+of+formation+flight&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Marks%2C+Tobias&rft.pub=&rft.format=Journal&rft.language=English&rft.issn=2226-4310
SOLR
_version_ 1757969471956320256
access_facet Electronic Resources
access_state_str Open Access
author Marks, Tobias, Dahlmann, Katrin, Grewe, Volker, Gollnick, Volker, Linke, Florian, Matthes, Sigrun, Stumpf, Eike, Swaid, Majed, Unterstraßer, Simon, Yamashita, Hiroshi, Zumegen, Clemens
author_corporate Technische Universität Hamburg, Institut für Lufttransportsysteme
author_corporate_role oth, oth
author_facet Marks, Tobias, Dahlmann, Katrin, Grewe, Volker, Gollnick, Volker, Linke, Florian, Matthes, Sigrun, Stumpf, Eike, Swaid, Majed, Unterstraßer, Simon, Yamashita, Hiroshi, Zumegen, Clemens, Technische Universität Hamburg, Institut für Lufttransportsysteme
author_role aut, aut, aut, aut, aut, aut, aut, aut, aut, aut, aut
author_sort Marks, Tobias
author_variant t m tm, k d kd, v g vg, v g vg, f l fl, s m sm, e s es, m s ms, s u su, h y hy, c z cz
callnumber-sort
collection lfer
container_reference Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
container_title Aerospace
contents The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft’s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world’s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5–6%.
ctrlnum (DE-627)1745287590, (DE-599)KXP1745287590
dewey-full 600:TECHNIK, 620:INGENIEURWISSENSCHAFTEN
dewey-hundreds 600 - Technology
dewey-ones 600 - Technology, 620 - Engineering & allied operations
dewey-raw 600: Technik, 620: Ingenieurwissenschaften
dewey-search 600: Technik, 620: Ingenieurwissenschaften
dewey-sort 3600 TECHNIK
dewey-tens 600 - Technology, 620 - Engineering
doi_str_mv 10.15480/882.3236, 10.3390/aerospace8010014
facet_avail Online, Free
finc_class_facet Technik
fincclass_txtF_mv technology, engineering-process
footnote Sonstige Körperschaft: Technische Universität Hamburg, Sonstige Körperschaft: Technische Universität Hamburg, Institut für Lufttransportsysteme
format ElectronicBookComponentPart
format_access_txtF_mv Article, E-Article
format_de105 Ebook
format_de14 Article, E-Article
format_de15 Article, E-Article
format_del152 Buch
format_detail_txtF_mv text-online-monograph-child
format_dezi4 e-Book
format_finc Article, E-Article
format_legacy ElectronicBookPart
format_strict_txtF_mv E-Article
geogr_code not assigned
geogr_code_person Germany
hierarchy_parent_id 0-778375048
hierarchy_parent_title Aerospace
hierarchy_sequence Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
hierarchy_top_id 0-778375048
hierarchy_top_title Aerospace
id 0-1745287590
illustrated Not Illustrated
imprint 8 January 2021
imprint_str_mv 8 January 2021
institution DE-D117, DE-105, LFER, DE-Ch1, DE-15, DE-14, DE-Zwi2
is_hierarchy_id 0-1745287590
is_hierarchy_title Climate impact mitigation potential of formation flight
isil_str_mv LFER
issn 2226-4310
kxp_id_str 1745287590
language English
last_indexed 2023-02-16T06:52:13.102Z
license_str_mv https://creativecommons.org/licenses/by
local_heading_facet_dezwi2 aircraft wake-surfing, formation flight, air traffic management, fuel savings, climate impact
marc024a_ct_mv urn:nbn:de:gbv:830-882.0120104, 10.15480/882.3236, 10.3390/aerospace8010014, 11420/8384
match_str marks2021climateimpactmitigationpotentialofformationflight
mega_collection Verbunddaten SWB, Lizenzfreie Online-Ressourcen
misc_de105 EBOOK
multipart_link 401032795
multipart_part (401032795)Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
names_id_str_mv (DE-588)1192487885, (DE-627)1671042247, (DE-588)1021754773, (DE-627)715831550, (DE-576)364301414, (DE-588)173110479, (DE-627)698033434, (DE-576)133962172, (DE-588)129040525, (DE-627)387890874, (DE-576)297462385, (DE-588)1105675297, (DE-627)862743052, (DE-576)473669609, (DE-588)128551658, (DE-627)374716056, (DE-576)187224005, (DE-588)128856084, (DE-627)383660106, (DE-576)188426523, (DE-588)1209282607, (DE-627)1696929288, (DE-588)137182384, (DE-627)590353977, (DE-576)302390421, (DE-588)1112763473, (DE-627)866918418, (DE-576)476770564, (DE-588)113826007X, (DE-627)895590646, (DE-576)492453209
physical Illustrationen, Diagramme, 18
publishDate 8 January 2021
publishDateSort 2021
publishPlace
publisher
record_format marcfinc
record_id 1745287590
recordtype marcfinc
rvk_facet No subject assigned
source_id 0
spelling Marks, Tobias VerfasserIn (DE-588)1192487885 (DE-627)1671042247 aut, Climate impact mitigation potential of formation flight Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen, 8 January 2021, Illustrationen, Diagramme, 18, Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, Sonstige Körperschaft: Technische Universität Hamburg, Sonstige Körperschaft: Technische Universität Hamburg, Institut für Lufttransportsysteme, DE-830 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2, The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft’s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world’s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5–6%., DE-830 Namensnennung 4.0 International CC BY 4.0 cc https://creativecommons.org/licenses/by/4.0/, aircraft wake-surfing DSpace, formation flight DSpace, air traffic management DSpace, fuel savings DSpace, climate impact DSpace, Dahlmann, Katrin 1982- VerfasserIn (DE-588)1021754773 (DE-627)715831550 (DE-576)364301414 aut, Grewe, Volker VerfasserIn (DE-588)173110479 (DE-627)698033434 (DE-576)133962172 aut, Gollnick, Volker 1964- VerfasserIn (DE-588)129040525 (DE-627)387890874 (DE-576)297462385 aut, Linke, Florian VerfasserIn (DE-588)1105675297 (DE-627)862743052 (DE-576)473669609 aut, Matthes, Sigrun 1970- VerfasserIn (DE-588)128551658 (DE-627)374716056 (DE-576)187224005 aut, Stumpf, Eike 1971- VerfasserIn (DE-588)128856084 (DE-627)383660106 (DE-576)188426523 aut, Swaid, Majed VerfasserIn (DE-588)1209282607 (DE-627)1696929288 aut, Unterstraßer, Simon 1979- VerfasserIn (DE-588)137182384 (DE-627)590353977 (DE-576)302390421 aut, Yamashita, Hiroshi VerfasserIn aut, Zumegen, Clemens VerfasserIn aut, Technische Universität Hamburg (DE-588)1112763473 (DE-627)866918418 (DE-576)476770564 oth, Institut für Lufttransportsysteme (DE-588)113826007X (DE-627)895590646 (DE-576)492453209 oth, Enthalten in Aerospace Basel : MDPI, 2014 Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten Online-Ressource (DE-627)778375048 (DE-600)2756091-0 (DE-576)401032795 2226-4310 nnns, volume:8 year:2021 number:1 extent:18, http://nbn-resolving.de/urn:nbn:de:gbv:830-882.0120104 Resolving-System kostenfrei, https://doi.org/10.15480/882.3236 Resolving-System kostenfrei, http://hdl.handle.net/11420/8384 Resolving-System kostenfrei, https://doi.org/10.3390/aerospace8010014 Resolving-System, https://doi.org/10.3390/aerospace8010014 LFER, http://nbn-resolving.de/urn:nbn:de:gbv:830-882.0120104 LFER, LFER 2021-02-09T19:38:02Z
spellingShingle Marks, Tobias, Dahlmann, Katrin, Grewe, Volker, Gollnick, Volker, Linke, Florian, Matthes, Sigrun, Stumpf, Eike, Swaid, Majed, Unterstraßer, Simon, Yamashita, Hiroshi, Zumegen, Clemens, Climate impact mitigation potential of formation flight, The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft’s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world’s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5–6%., aircraft wake-surfing, formation flight, air traffic management, fuel savings, climate impact
title Climate impact mitigation potential of formation flight
title_auth Climate impact mitigation potential of formation flight
title_full Climate impact mitigation potential of formation flight Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen
title_fullStr Climate impact mitigation potential of formation flight Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen
title_full_unstemmed Climate impact mitigation potential of formation flight Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen
title_in_hierarchy Climate impact mitigation potential of formation flight / Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen,
title_short Climate impact mitigation potential of formation flight
title_sort climate impact mitigation potential of formation flight
topic aircraft wake-surfing, formation flight, air traffic management, fuel savings, climate impact
topic_facet aircraft wake-surfing, formation flight, air traffic management, fuel savings, climate impact
url http://nbn-resolving.de/urn:nbn:de:gbv:830-882.0120104, https://doi.org/10.15480/882.3236, http://hdl.handle.net/11420/8384, https://doi.org/10.3390/aerospace8010014
urn urn:nbn:de:gbv:830-882.0120104