Eintrag weiter verarbeiten

Climate impact mitigation potential of formation flight

Gespeichert in:

Veröffentlicht in: Aerospace Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
Personen und Körperschaften: Marks, Tobias (VerfasserIn), Dahlmann, Katrin (VerfasserIn), Grewe, Volker (VerfasserIn), Gollnick, Volker (VerfasserIn), Linke, Florian (VerfasserIn), Matthes, Sigrun (VerfasserIn), Stumpf, Eike (VerfasserIn), Swaid, Majed (VerfasserIn), Unterstraßer, Simon (VerfasserIn), Yamashita, Hiroshi (VerfasserIn), Zumegen, Clemens (VerfasserIn), Technische Universität Hamburg (Sonstige), Institut für Lufttransportsysteme (Sonstige)
Titel: Climate impact mitigation potential of formation flight/ Tobias Marks, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita and Clemens Zumegen
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
8 January 2021
Gesamtaufnahme: : Aerospace, Volume 8 (2021), issue 1, Artikel 14; insgesamt 18 Seiten
, volume:8
Schlagwörter:
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: The aerodynamic formation flight, which is also known as aircraft wake-surfing for efficiency (AWSE), enables aircraft to harvest the energy inherent in another aircraft’s wake vortex. As the thrust of the trailing aircraft can be reduced during cruise flight, the resulting benefit can be traded for longer flight time, larger range, less fuel consumption, or cost savings accordingly. Furthermore, as the amount and location of the emissions caused by the formation are subject to change and saturation effects in the cumulated wake of the formation can occur, AWSE can favorably affect the climate impact of the corresponding flights. In order to quantify these effects, we present an interdisciplinary approach combining the fields of aerodynamics, aircraft operations and atmospheric physics. The approach comprises an integrated model chain to assess the climate impact for a given air traffic scenario based on flight plan data, aerodynamic interactions between the formation members, detailed trajectory calculations as well as on an adapted climate model accounting for the saturation effects resulting from the proximity of the emissions of the formation members. Based on this approach, we derived representative AWSE scenarios for the world’s major airports by analyzing and assessing flight plans. The resulting formations were recalculated by a trajectory calculation tool and emission inventories for the scenarios were created. Based on these inventories, we quantitatively estimated the climate impact using the average temperature response (ATR) as climate metric, calculated as an average global near surface temperature change over a time horizon of 50 years. It is shown, that AWSE as a new operational procedure has a significant mitigation potential on climate impact. For a global formation flight scenario, we estimated the average relative change of climate response to range between 22% and 24% while the relative fuel saving effects sum up to 5–6%.
Beschreibung: Sonstige Körperschaft: Technische Universität Hamburg
Sonstige Körperschaft: Technische Universität Hamburg, Institut für Lufttransportsysteme
Umfang: Illustrationen, Diagramme
18
ISSN: 2226-4310
DOI: 10.15480/882.3236
Zugang: Open Access