Eintrag weiter verarbeiten

Prototyping and testing of composite riser joints for deepwater application

Gespeichert in:

Veröffentlicht in: Journal of reinforced plastics and composites 35(2016), 2, Seite 95-110
Personen und Körperschaften: Chen, Yu (VerfasserIn), Seemann, Ralf (VerfasserIn), Krause, Dieter (VerfasserIn), Tay, Tong-Earn (VerfasserIn), Tan, Vincent B. C. (VerfasserIn), Technische Universität Hamburg-Harburg (Sonstige, Sonstige Körperschaft), Technische Universität Hamburg-Harburg Institut für Produktentwicklung und Konstruktionstechnik (Sonstige, Sonstige Körperschaft)
Titel: Prototyping and testing of composite riser joints for deepwater application/ Yu Chen, Ralf Seemann, Dieter Krause, Tong-Earn Tay and Vincent B. C. Tan
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2016
Gesamtaufnahme: : Journal of reinforced plastics and composites, 35(2016), 2, Seite 95-110
, volume:35
Schlagwörter:
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: The high strength to weight ratio, good corrosion resistance, and excellent fatigue property make carbon fiber-reinforced plastics a competitive material solution to replace steel in deepwater riser application. In this work, scaled-down composite riser joints were fabricated using a filament-winding machine. The prototypes comprise several carbon fiber-reinforced plastic layers wound over an aluminum liner. They consist of a middle tubular section and two metal-composite interface end fittings for the transfer of load between joints. A series of mechanical tests, including tension and combined tension-bending loading tests were performed to characterize their structural capacity and evaluate the improvement in performance over a purely metallic mandrel. In addition, finite element analyses incorporating elastic–plastic properties of the metallic liner, interfacial failure, and complex carbon fiber-reinforced plastics failure modes were carried out. The numerical predictions are in good agreement with the experimental measurements. The experimentally verified FE framework was then extended to design and analyze a full-scale composite riser model for performance prediction to accelerate the application of composite risers by shortening product development cycle and reducing prototyping costs.
Umfang: Illustrationen, Diagramme
ISSN: 1530-7964
DOI: 10.1177%2F0731684415607392