author_facet Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
author Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
spellingShingle Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
PeerJ
Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
General Agricultural and Biological Sciences
General Biochemistry, Genetics and Molecular Biology
General Medicine
General Neuroscience
author_sort trubl, gareth
spelling Trubl, Gareth Roux, Simon Solonenko, Natalie Li, Yueh-Fen Bolduc, Benjamin Rodríguez-Ramos, Josué Eloe-Fadrosh, Emiley A. Rich, Virginia I. Sullivan, Matthew B. 2167-8359 PeerJ General Agricultural and Biological Sciences General Biochemistry, Genetics and Molecular Biology General Medicine General Neuroscience http://dx.doi.org/10.7717/peerj.7265 <jats:p>Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="protocols.io">protocols.io</jats:ext-link>, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.</jats:p> Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils PeerJ
doi_str_mv 10.7717/peerj.7265
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuNzcxNy9wZWVyai43MjY1
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuNzcxNy9wZWVyai43MjY1
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Zi4
DE-Gla1
DE-15
DE-Pl11
DE-Rs1
DE-14
DE-105
DE-Ch1
DE-L229
imprint PeerJ, 2019
imprint_str_mv PeerJ, 2019
issn 2167-8359
issn_str_mv 2167-8359
language English
mega_collection PeerJ (CrossRef)
match_str trubl2019towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
publishDateSort 2019
publisher PeerJ
recordtype ai
record_format ai
series PeerJ
source_id 49
title Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_fullStr Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_short Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_sort towards optimized viral metagenomes for double-stranded and single-stranded dna viruses from challenging soils
topic General Agricultural and Biological Sciences
General Biochemistry, Genetics and Molecular Biology
General Medicine
General Neuroscience
url http://dx.doi.org/10.7717/peerj.7265
publishDate 2019
physical e7265
description <jats:p>Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="protocols.io">protocols.io</jats:ext-link>, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.</jats:p>
container_start_page 0
container_title PeerJ
container_volume 7
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792347443152551939
geogr_code not assigned
last_indexed 2024-03-01T17:55:22.029Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Towards+optimized+viral+metagenomes+for+double-stranded+and+single-stranded+DNA+viruses+from+challenging+soils&rft.date=2019-07-04&genre=article&issn=2167-8359&volume=7&pages=e7265&jtitle=PeerJ&atitle=Towards+optimized+viral+metagenomes+for+double-stranded+and+single-stranded+DNA+viruses+from+challenging+soils&aulast=Sullivan&aufirst=Matthew+B.&rft_id=info%3Adoi%2F10.7717%2Fpeerj.7265&rft.language%5B0%5D=eng
SOLR
_version_ 1792347443152551939
author Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A., Rich, Virginia I., Sullivan, Matthew B.
author_facet Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A., Rich, Virginia I., Sullivan, Matthew B., Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A., Rich, Virginia I., Sullivan, Matthew B.
author_sort trubl, gareth
container_start_page 0
container_title PeerJ
container_volume 7
description <jats:p>Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="protocols.io">protocols.io</jats:ext-link>, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.</jats:p>
doi_str_mv 10.7717/peerj.7265
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuNzcxNy9wZWVyai43MjY1
imprint PeerJ, 2019
imprint_str_mv PeerJ, 2019
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Zi4, DE-Gla1, DE-15, DE-Pl11, DE-Rs1, DE-14, DE-105, DE-Ch1, DE-L229
issn 2167-8359
issn_str_mv 2167-8359
language English
last_indexed 2024-03-01T17:55:22.029Z
match_str trubl2019towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
mega_collection PeerJ (CrossRef)
physical e7265
publishDate 2019
publishDateSort 2019
publisher PeerJ
record_format ai
recordtype ai
series PeerJ
source_id 49
spelling Trubl, Gareth Roux, Simon Solonenko, Natalie Li, Yueh-Fen Bolduc, Benjamin Rodríguez-Ramos, Josué Eloe-Fadrosh, Emiley A. Rich, Virginia I. Sullivan, Matthew B. 2167-8359 PeerJ General Agricultural and Biological Sciences General Biochemistry, Genetics and Molecular Biology General Medicine General Neuroscience http://dx.doi.org/10.7717/peerj.7265 <jats:p>Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="protocols.io">protocols.io</jats:ext-link>, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.</jats:p> Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils PeerJ
spellingShingle Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A., Rich, Virginia I., Sullivan, Matthew B., PeerJ, Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils, General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience
title Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_fullStr Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_short Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_sort towards optimized viral metagenomes for double-stranded and single-stranded dna viruses from challenging soils
title_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
topic General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience
url http://dx.doi.org/10.7717/peerj.7265