author_facet Sato
Sato
author Sato
spellingShingle Sato
International Journal of Molecular Sciences
Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
Inorganic Chemistry
Organic Chemistry
Physical and Theoretical Chemistry
Computer Science Applications
Spectroscopy
Molecular Biology
General Medicine
Catalysis
author_sort sato
spelling Sato 1422-0067 MDPI AG Inorganic Chemistry Organic Chemistry Physical and Theoretical Chemistry Computer Science Applications Spectroscopy Molecular Biology General Medicine Catalysis http://dx.doi.org/10.3390/ijms20071752 <jats:p>To obtain a systematic view of the helix-8-second residue responsible for G protein-coupled receptor (GPCR)–G protein initial specific interactions, 786 human GPCRs were subclassified based on the pairs of agonist groups and target G proteins and compared with their conserved second residue of helix 8. Of 314 non-olfactory and deorphanized GPCRs, 273 (87%) conserved single amino acids in the subclasses, while 93 (58%) of the 160 subclasses possessed only a single GPCR member. Class B, C, Frizzled, and trace amine-associated GPCRs demonstrated 100% conservation, whereas class Ⅰ and Ⅱ olfactory and vomeronasal 1 receptors demonstrated much lower rates of conservation (20–47%). These conserved residues are characteristic of GPCR classes and G protein subtypes and confer their functionally-distinct roles.</jats:p> Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins International Journal of Molecular Sciences
doi_str_mv 10.3390/ijms20071752
facet_avail Online
Free
finc_class_facet Chemie und Pharmazie
Physik
Informatik
Biologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzM5MC9pam1zMjAwNzE3NTI
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzM5MC9pam1zMjAwNzE3NTI
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
imprint MDPI AG, 2019
imprint_str_mv MDPI AG, 2019
issn 1422-0067
issn_str_mv 1422-0067
language English
mega_collection MDPI AG (CrossRef)
match_str 2019conserved2ndresidueofhelix8ofgpcrmayconferthesubclasscharacteristicanddistinctrolesthrougharapidinitialinteractionwithspecificgproteins
publishDateSort 2019
publisher MDPI AG
recordtype ai
record_format ai
series International Journal of Molecular Sciences
source_id 49
title Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_unstemmed Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_full Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_fullStr Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_full_unstemmed Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_short Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_sort conserved 2nd residue of helix 8 of gpcr may confer the subclass-characteristic and distinct roles through a rapid initial interaction with specific g proteins
topic Inorganic Chemistry
Organic Chemistry
Physical and Theoretical Chemistry
Computer Science Applications
Spectroscopy
Molecular Biology
General Medicine
Catalysis
url http://dx.doi.org/10.3390/ijms20071752
publishDate 2019
physical 1752
description <jats:p>To obtain a systematic view of the helix-8-second residue responsible for G protein-coupled receptor (GPCR)–G protein initial specific interactions, 786 human GPCRs were subclassified based on the pairs of agonist groups and target G proteins and compared with their conserved second residue of helix 8. Of 314 non-olfactory and deorphanized GPCRs, 273 (87%) conserved single amino acids in the subclasses, while 93 (58%) of the 160 subclasses possessed only a single GPCR member. Class B, C, Frizzled, and trace amine-associated GPCRs demonstrated 100% conservation, whereas class Ⅰ and Ⅱ olfactory and vomeronasal 1 receptors demonstrated much lower rates of conservation (20–47%). These conserved residues are characteristic of GPCR classes and G protein subtypes and confer their functionally-distinct roles.</jats:p>
container_issue 7
container_start_page 0
container_title International Journal of Molecular Sciences
container_volume 20
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792339231261065223
geogr_code not assigned
last_indexed 2024-03-01T15:44:50.793Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Conserved+2nd+Residue+of+Helix+8+of+GPCR+May+Confer+the+Subclass-Characteristic+and+Distinct+Roles+through+a+Rapid+Initial+Interaction+with+Specific+G+Proteins&rft.date=2019-04-09&genre=article&issn=1422-0067&volume=20&issue=7&pages=1752&jtitle=International+Journal+of+Molecular+Sciences&atitle=Conserved+2nd+Residue+of+Helix+8+of+GPCR+May+Confer+the+Subclass-Characteristic+and+Distinct+Roles+through+a+Rapid+Initial+Interaction+with+Specific+G+Proteins&aulast=Sato&rft_id=info%3Adoi%2F10.3390%2Fijms20071752&rft.language%5B0%5D=eng
SOLR
_version_ 1792339231261065223
author Sato
author_facet Sato, Sato
author_sort sato
container_issue 7
container_start_page 0
container_title International Journal of Molecular Sciences
container_volume 20
description <jats:p>To obtain a systematic view of the helix-8-second residue responsible for G protein-coupled receptor (GPCR)–G protein initial specific interactions, 786 human GPCRs were subclassified based on the pairs of agonist groups and target G proteins and compared with their conserved second residue of helix 8. Of 314 non-olfactory and deorphanized GPCRs, 273 (87%) conserved single amino acids in the subclasses, while 93 (58%) of the 160 subclasses possessed only a single GPCR member. Class B, C, Frizzled, and trace amine-associated GPCRs demonstrated 100% conservation, whereas class Ⅰ and Ⅱ olfactory and vomeronasal 1 receptors demonstrated much lower rates of conservation (20–47%). These conserved residues are characteristic of GPCR classes and G protein subtypes and confer their functionally-distinct roles.</jats:p>
doi_str_mv 10.3390/ijms20071752
facet_avail Online, Free
finc_class_facet Chemie und Pharmazie, Physik, Informatik, Biologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMzM5MC9pam1zMjAwNzE3NTI
imprint MDPI AG, 2019
imprint_str_mv MDPI AG, 2019
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2
issn 1422-0067
issn_str_mv 1422-0067
language English
last_indexed 2024-03-01T15:44:50.793Z
match_str 2019conserved2ndresidueofhelix8ofgpcrmayconferthesubclasscharacteristicanddistinctrolesthrougharapidinitialinteractionwithspecificgproteins
mega_collection MDPI AG (CrossRef)
physical 1752
publishDate 2019
publishDateSort 2019
publisher MDPI AG
record_format ai
recordtype ai
series International Journal of Molecular Sciences
source_id 49
spelling Sato 1422-0067 MDPI AG Inorganic Chemistry Organic Chemistry Physical and Theoretical Chemistry Computer Science Applications Spectroscopy Molecular Biology General Medicine Catalysis http://dx.doi.org/10.3390/ijms20071752 <jats:p>To obtain a systematic view of the helix-8-second residue responsible for G protein-coupled receptor (GPCR)–G protein initial specific interactions, 786 human GPCRs were subclassified based on the pairs of agonist groups and target G proteins and compared with their conserved second residue of helix 8. Of 314 non-olfactory and deorphanized GPCRs, 273 (87%) conserved single amino acids in the subclasses, while 93 (58%) of the 160 subclasses possessed only a single GPCR member. Class B, C, Frizzled, and trace amine-associated GPCRs demonstrated 100% conservation, whereas class Ⅰ and Ⅱ olfactory and vomeronasal 1 receptors demonstrated much lower rates of conservation (20–47%). These conserved residues are characteristic of GPCR classes and G protein subtypes and confer their functionally-distinct roles.</jats:p> Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins International Journal of Molecular Sciences
spellingShingle Sato, International Journal of Molecular Sciences, Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins, Inorganic Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Computer Science Applications, Spectroscopy, Molecular Biology, General Medicine, Catalysis
title Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_full Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_fullStr Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_full_unstemmed Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_short Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
title_sort conserved 2nd residue of helix 8 of gpcr may confer the subclass-characteristic and distinct roles through a rapid initial interaction with specific g proteins
title_unstemmed Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins
topic Inorganic Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Computer Science Applications, Spectroscopy, Molecular Biology, General Medicine, Catalysis
url http://dx.doi.org/10.3390/ijms20071752