Details
Zusammenfassung: <jats:title>Abstract</jats:title> <jats:p>This work deals with the reliability assessment of a tanker ship hull structure subjected to a vertical bending moment and corrosion degradation. The progressive collapse and ultimate load carrying capacity are estimated based on experimentally tested scaled box-shaped-specimens. The translation of the strength estimate of the scaled specimen to the real tanker ship hull structure is performed based on the dimensional theory developing a step-wise linear stress-strain relationship. The load-carrying capacity is considered as a stochastic variable, and the uncertainties resulted from the scaled-specimen to the real-structure strength translation, and the subjected load of the real ship are also accounted for. A sensitivity analysis concerning the stochastic variables, included in the ultimate limit state function is performed. The partial safety factors, in the case of a scaled specimen and real structure, are also identified, and conclusions are derived.</jats:p>
Umfang: 47-54
ISSN: 2083-7429
DOI: 10.2478/pomr-2019-0024