Details
Zusammenfassung: <jats:p>To shed some light on the mechanisms behind renal fibrogenesis, the present study immunohistochemically investigated the participation of different macrophage populations and myofibroblastic cells in rat renal interstitial fibrosis developed chronically after repeated injection of cisplatin (2 mg/kg body weight, once weekly for 7 weeks). During the 19-week recovery period after the final injection, fibrotic lesions progressively developed in the corticomedullary junction, with the greatest level at post-final injection (FPI) week 5, and then the lesions were gradually repaired by PFI week 19, indicative of a healing process. In conformity with the development of fibrotic lesions, the number of myofibroblastic cells reacting with an anti-α-smooth muscle actin antibody was increased, with a peak at PFI week 3, and collagens (types I, III, and IV), fibronection, and laminin were excessively accumulated in these areas. Interstitial cells forming the fibrotic lesions showed mitotic activity at the early stages, whereas they disappeared by apoptosis in the healing process. A large number of cells reacting with an antibody of ED1 (for exudate macrophages), ED2 (for resident macrophages), or OX6 (for major histocompatibility complex class II-presenting macrophages and interstitial dendritic cells) had already appeared at PF1 week 1, and then their numbers increased, with a peak at PFI weeks 7, 3, and 9 in ED1-, ED2-, and OX6-positive cells, respectively. Thereafter, the number of ED1- and ED2-positive cells decreased, whereas the number of OX6-positive cells persisted at a high level until PFI week 19. In the healing process, clusters of lymphocytes were present, the development of which might have been related to OX6-positive cells. The present study demonstrated that chronically developing rat renal interstitial fibrosis might be produced by the complicated mechanisms evoked by interactions between different macrophage populations and myofibroblastic cells, because macrophages show heterogeneous functions depending on microenvironmental factors.</jats:p>
Umfang: 322-333
ISSN: 0300-9858
1544-2217
DOI: 10.1354/vp.39-3-322