Details
Zusammenfassung: <jats:p>Riboswitches, as previously reported, are natural RNA aptamers that regulate the expression of numerous bacterial metabolic genes in response to small molecule ligands. It has recently been shown that these RNA genetic elements are also present near the splice site junctions of plant and fungal introns, thus raising the possibility of their involvement in regulating mRNA splicing. Here it is shown for the first time that a riboswitch can be engineered to regulate pre-mRNA splicing in vitro. We show that insertion of a high-affinity theophylline binding aptamer into the 3′ splice site (3′ ss) region of a model pre-mRNA (AdML-Theo29AG) enables its splicing to be repressed by the addition theophylline. Our results indicate that the location of 3′ ss AG within the aptamer plays a crucial role in conferring theophylline-dependent control of pre-mRNA splicing. We also show that theophylline-mediated control of pre-mRNA splicing is highly specific by first demonstrating that a small molecule ligand similar in shape and size to theophylline had no effect on the splicing of AdML-Theo29AG pre-mRNA. Second, theophylline failed to exert any influence on the splicing of a pre-mRNA that does not contain its binding site. Third, theophylline specifically blocks the step II of the splicing reaction. Finally, we provide evidence that theophylline-dependent control of pre-mRNA splicing is functionally relevant.</jats:p>
Umfang: 1667-1677
ISSN: 1469-9001
1355-8382
DOI: 10.1261/rna.2162205