Details
Zusammenfassung: <jats:title>Summary</jats:title><jats:p>Cold temperature during the reproductive stage often causes great yield loss of grain crops in subtropical and temperate regions. Previously we showed that the rice transcription factor <jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup> plays an important role in cold adaptation at the seedling stage. Here we further demonstrate that <jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup> also confers cold stress tolerance at the reproductive stage. <jats:italic><jats:styled-content style="fixed-case">bZIP</jats:styled-content>73</jats:italic><jats:sup><jats:italic>Jap</jats:italic></jats:sup> was up‐regulated under cold treatment and predominately expressed in panicles at the early binucleate and flowering stages. <jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup> forms heterodimers with <jats:styled-content style="fixed-case">bZIP</jats:styled-content>71, and co‐expression of <jats:italic><jats:styled-content style="fixed-case">bZIP</jats:styled-content>73</jats:italic><jats:sup><jats:italic>Jap</jats:italic></jats:sup> and <jats:italic><jats:styled-content style="fixed-case">bZIP</jats:styled-content>71</jats:italic> transgenic lines significantly increased seed‐setting rate and grain yield under natural cold stress conditions. <jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup>:<jats:styled-content style="fixed-case">bZIP</jats:styled-content>71 not only repressed <jats:styled-content style="fixed-case">ABA</jats:styled-content> level in anthers, but also enhanced soluble sugar transport from anthers to pollens and improved pollen grain fertility, seed‐setting rate, and grain yield. Interestingly, <jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup>:<jats:styled-content style="fixed-case">bZIP</jats:styled-content>71 also regulated the expression of <jats:italic><jats:styled-content style="fixed-case">qLTG</jats:styled-content>3‐1</jats:italic><jats:sup><jats:italic>Nip</jats:italic></jats:sup>, and <jats:italic><jats:styled-content style="fixed-case">qLTG</jats:styled-content>3‐1</jats:italic><jats:sup><jats:italic>Nip</jats:italic></jats:sup> overexpression lines greatly improved rice tolerance to cold stress during the reproductive stage. Therefore, our work establishes a framework for rice cold stress tolerance through the <jats:styled-content style="fixed-case">bZIP</jats:styled-content>71‐<jats:styled-content style="fixed-case">bZIP</jats:styled-content>73<jats:sup>Jap</jats:sup>‐<jats:styled-content style="fixed-case">qLTG</jats:styled-content>3‐1<jats:sup>Nip</jats:sup>‐sugar transport pathway. Together with our previous work, our results provide a powerful tool for improving rice cold stress tolerance at both the seedling and the reproductive stages.</jats:p>
Umfang: 1834-1849
ISSN: 1467-7644
1467-7652
DOI: 10.1111/pbi.13104