author_facet HONG, Y.
FEGLEY, B.
HONG, Y.
FEGLEY, B.
author HONG, Y.
FEGLEY, B.
spellingShingle HONG, Y.
FEGLEY, B.
Meteoritics & Planetary Science
Experimental studies of magnetite formation in the solar nebula
Space and Planetary Science
Geophysics
author_sort hong, y.
spelling HONG, Y. FEGLEY, B. 1086-9379 1945-5100 Wiley Space and Planetary Science Geophysics http://dx.doi.org/10.1111/j.1945-5100.1998.tb01715.x <jats:p><jats:bold>Abstract—</jats:bold> Oxidation of Fe metal and Gibeon meteorite metal to magnetite <jats:italic>via</jats:italic> the net reaction 3 Fe (metal) + 4 H<jats:sub>2</jats:sub>O (gas) = Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (magnetite) + 4 H<jats:sub>2</jats:sub> (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>‐He gas mixtures with H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O molar ratios of ∼4–41. The magnetite produced was identified by x‐ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe‐Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling‐Brounshtein, and Valensi‐Carter models for powder reactions. Magnetite formation followed parabolic (<jats:italic>i.e.</jats:italic>, diffusion‐controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are:</jats:p><jats:p><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j.1945-5100.1998.tb01715.x.fu1.gif" xlink:title="inline image" /></jats:p><jats:p>These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H<jats:sub>2</jats:sub>S‐H<jats:sub>2</jats:sub> gas mixtures containing 1000 or 10 000 ppmv H<jats:sub>2</jats:sub>S (Lauretta <jats:italic>et al.</jats:italic>, 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.</jats:p> Experimental studies of magnetite formation in the solar nebula Meteoritics & Planetary Science
doi_str_mv 10.1111/j.1945-5100.1998.tb01715.x
facet_avail Online
Free
finc_class_facet Physik
Technik
Geologie und Paläontologie
Geographie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE5NDUtNTEwMC4xOTk4LnRiMDE3MTUueA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE5NDUtNTEwMC4xOTk4LnRiMDE3MTUueA
institution DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
imprint Wiley, 1998
imprint_str_mv Wiley, 1998
issn 1086-9379
1945-5100
issn_str_mv 1086-9379
1945-5100
language English
mega_collection Wiley (CrossRef)
match_str hong1998experimentalstudiesofmagnetiteformationinthesolarnebula
publishDateSort 1998
publisher Wiley
recordtype ai
record_format ai
series Meteoritics & Planetary Science
source_id 49
title Experimental studies of magnetite formation in the solar nebula
title_unstemmed Experimental studies of magnetite formation in the solar nebula
title_full Experimental studies of magnetite formation in the solar nebula
title_fullStr Experimental studies of magnetite formation in the solar nebula
title_full_unstemmed Experimental studies of magnetite formation in the solar nebula
title_short Experimental studies of magnetite formation in the solar nebula
title_sort experimental studies of magnetite formation in the solar nebula
topic Space and Planetary Science
Geophysics
url http://dx.doi.org/10.1111/j.1945-5100.1998.tb01715.x
publishDate 1998
physical 1101-1112
description <jats:p><jats:bold>Abstract—</jats:bold> Oxidation of Fe metal and Gibeon meteorite metal to magnetite <jats:italic>via</jats:italic> the net reaction 3 Fe (metal) + 4 H<jats:sub>2</jats:sub>O (gas) = Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (magnetite) + 4 H<jats:sub>2</jats:sub> (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>‐He gas mixtures with H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O molar ratios of ∼4–41. The magnetite produced was identified by x‐ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe‐Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling‐Brounshtein, and Valensi‐Carter models for powder reactions. Magnetite formation followed parabolic (<jats:italic>i.e.</jats:italic>, diffusion‐controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are:</jats:p><jats:p><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j.1945-5100.1998.tb01715.x.fu1.gif" xlink:title="inline image" /></jats:p><jats:p>These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H<jats:sub>2</jats:sub>S‐H<jats:sub>2</jats:sub> gas mixtures containing 1000 or 10 000 ppmv H<jats:sub>2</jats:sub>S (Lauretta <jats:italic>et al.</jats:italic>, 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.</jats:p>
container_issue 5
container_start_page 1101
container_title Meteoritics & Planetary Science
container_volume 33
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792342560350404624
geogr_code not assigned
last_indexed 2024-03-01T16:37:33.19Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Experimental+studies+of+magnetite+formation+in+the+solar+nebula&rft.date=1998-09-01&genre=article&issn=1945-5100&volume=33&issue=5&spage=1101&epage=1112&pages=1101-1112&jtitle=Meteoritics+%26+Planetary+Science&atitle=Experimental+studies+of+magnetite+formation+in+the+solar+nebula&aulast=FEGLEY&aufirst=B.&rft_id=info%3Adoi%2F10.1111%2Fj.1945-5100.1998.tb01715.x&rft.language%5B0%5D=eng
SOLR
_version_ 1792342560350404624
author HONG, Y., FEGLEY, B.
author_facet HONG, Y., FEGLEY, B., HONG, Y., FEGLEY, B.
author_sort hong, y.
container_issue 5
container_start_page 1101
container_title Meteoritics & Planetary Science
container_volume 33
description <jats:p><jats:bold>Abstract—</jats:bold> Oxidation of Fe metal and Gibeon meteorite metal to magnetite <jats:italic>via</jats:italic> the net reaction 3 Fe (metal) + 4 H<jats:sub>2</jats:sub>O (gas) = Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (magnetite) + 4 H<jats:sub>2</jats:sub> (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>‐He gas mixtures with H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O molar ratios of ∼4–41. The magnetite produced was identified by x‐ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe‐Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling‐Brounshtein, and Valensi‐Carter models for powder reactions. Magnetite formation followed parabolic (<jats:italic>i.e.</jats:italic>, diffusion‐controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are:</jats:p><jats:p><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j.1945-5100.1998.tb01715.x.fu1.gif" xlink:title="inline image" /></jats:p><jats:p>These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H<jats:sub>2</jats:sub>S‐H<jats:sub>2</jats:sub> gas mixtures containing 1000 or 10 000 ppmv H<jats:sub>2</jats:sub>S (Lauretta <jats:italic>et al.</jats:italic>, 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.</jats:p>
doi_str_mv 10.1111/j.1945-5100.1998.tb01715.x
facet_avail Online, Free
finc_class_facet Physik, Technik, Geologie und Paläontologie, Geographie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE5NDUtNTEwMC4xOTk4LnRiMDE3MTUueA
imprint Wiley, 1998
imprint_str_mv Wiley, 1998
institution DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1
issn 1086-9379, 1945-5100
issn_str_mv 1086-9379, 1945-5100
language English
last_indexed 2024-03-01T16:37:33.19Z
match_str hong1998experimentalstudiesofmagnetiteformationinthesolarnebula
mega_collection Wiley (CrossRef)
physical 1101-1112
publishDate 1998
publishDateSort 1998
publisher Wiley
record_format ai
recordtype ai
series Meteoritics & Planetary Science
source_id 49
spelling HONG, Y. FEGLEY, B. 1086-9379 1945-5100 Wiley Space and Planetary Science Geophysics http://dx.doi.org/10.1111/j.1945-5100.1998.tb01715.x <jats:p><jats:bold>Abstract—</jats:bold> Oxidation of Fe metal and Gibeon meteorite metal to magnetite <jats:italic>via</jats:italic> the net reaction 3 Fe (metal) + 4 H<jats:sub>2</jats:sub>O (gas) = Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> (magnetite) + 4 H<jats:sub>2</jats:sub> (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>‐He gas mixtures with H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O molar ratios of ∼4–41. The magnetite produced was identified by x‐ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe‐Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling‐Brounshtein, and Valensi‐Carter models for powder reactions. Magnetite formation followed parabolic (<jats:italic>i.e.</jats:italic>, diffusion‐controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are:</jats:p><jats:p><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j.1945-5100.1998.tb01715.x.fu1.gif" xlink:title="inline image" /></jats:p><jats:p>These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H<jats:sub>2</jats:sub>S‐H<jats:sub>2</jats:sub> gas mixtures containing 1000 or 10 000 ppmv H<jats:sub>2</jats:sub>S (Lauretta <jats:italic>et al.</jats:italic>, 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.</jats:p> Experimental studies of magnetite formation in the solar nebula Meteoritics & Planetary Science
spellingShingle HONG, Y., FEGLEY, B., Meteoritics & Planetary Science, Experimental studies of magnetite formation in the solar nebula, Space and Planetary Science, Geophysics
title Experimental studies of magnetite formation in the solar nebula
title_full Experimental studies of magnetite formation in the solar nebula
title_fullStr Experimental studies of magnetite formation in the solar nebula
title_full_unstemmed Experimental studies of magnetite formation in the solar nebula
title_short Experimental studies of magnetite formation in the solar nebula
title_sort experimental studies of magnetite formation in the solar nebula
title_unstemmed Experimental studies of magnetite formation in the solar nebula
topic Space and Planetary Science, Geophysics
url http://dx.doi.org/10.1111/j.1945-5100.1998.tb01715.x