author_facet Lindqvist, Lennart
Schweda, K. H.
Reeves, Peter R.
Lindberg, Alf A.
Lindqvist, Lennart
Schweda, K. H.
Reeves, Peter R.
Lindberg, Alf A.
author Lindqvist, Lennart
Schweda, K. H.
Reeves, Peter R.
Lindberg, Alf A.
spellingShingle Lindqvist, Lennart
Schweda, K. H.
Reeves, Peter R.
Lindberg, Alf A.
European Journal of Biochemistry
In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
Biochemistry
author_sort lindqvist, lennart
spelling Lindqvist, Lennart Schweda, K. H. Reeves, Peter R. Lindberg, Alf A. 0014-2956 1432-1033 Wiley Biochemistry http://dx.doi.org/10.1111/j.1432-1033.1994.0863b.x <jats:p> <jats:italic>In vitro</jats:italic> enzymic synthesis of CDP‐D‐abequose, CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose and CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was achieved using enzymes from cell extracts of cultures of <jats:italic>Escherichia coli</jats:italic> strains harbouring and expressing genes of the <jats:italic>rfb</jats:italic> gene cluster of <jats:italic>Salmonella enterica</jats:italic> LT2. From an initial synthesis step, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was isolated after 30 min reaction, using CDP‐D‐glucose, NAD and CDP‐glucose 4,6‐dehydratase, followed by protein precipitation and desalting by gel chromatography (yield 90.6%). From that intermediate, CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was produced in a reaction using NADH and a crude extract containing the required enzymes. CDP‐D‐abequose synthesis was performed either in the presence of excess NADH and NADPH or using an enzymic system which regenerates low concentrations of the coenzymes. In a two‐step reaction, CDP‐D‐glucose was first converted to CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose, then, following addition of the required coenzymes and enzymes, CDP‐D‐abequose was formed from this intermediary product in a 1‐h incubation. Starting from 250 mg CDP‐D‐glucose, the molar yield of CDP‐D‐abequose after protein precipitation and HPLC was 82%, corresponding to more than 200 mg. CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose was synthesised from α‐D‐[U<jats:sup>14</jats:sup>C]glucose 1‐phosphate and CTP using purified glucose‐1‐phosphate cytidylyltransferase in a reaction preceding the later steps. GC‐MS and NMR revealed that the hexose part of the end product was 3,6‐dideoxy‐D‐galactose (abequose) and that the corresponding intermediates were 4‐keto‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose and 4‐keto‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose, respectively. The synthesized CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose exhibited the characteristic ultraviolet light absorption at 318 nm but no corresponding absorption was found for CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose. A HPLC technique, where the four CDP‐sugars were baseline separated, was developed and used for enzyme assays and for the analysis of synthesized products.</jats:p> Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC <i>In vitro</i> Synthesis of CDP‐D‐Abequose Using <i>Salmonella</i> Enzymes of Cloned <i>rfb</i> Genes : Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC European Journal of Biochemistry
doi_str_mv 10.1111/j.1432-1033.1994.0863b.x
facet_avail Online
Free
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE0MzItMTAzMy4xOTk0LjA4NjNiLng
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE0MzItMTAzMy4xOTk0LjA4NjNiLng
institution DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
imprint Wiley, 1994
imprint_str_mv Wiley, 1994
issn 0014-2956
1432-1033
issn_str_mv 0014-2956
1432-1033
language English
mega_collection Wiley (CrossRef)
match_str lindqvist1994invitrosynthesisofcdpdabequoseusingsalmonellaenzymesofclonedrfbgenesproductionofcdp6deoxydxylo4hexulosecdp36dideoxydxylo4hexuloseandcdp36dideoxydgalactoseandisolationbyhplcproductionofcdp6deoxydixyloi4hexulosecdp36dideoxydixyloi4hexuloseandcdp36dideoxydgalactoseandisolationbyhplc
publishDateSort 1994
publisher Wiley
recordtype ai
record_format ai
series European Journal of Biochemistry
source_id 49
title_sub Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_unstemmed In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_full In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_fullStr In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_full_unstemmed In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_short In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_sort <i>in vitro</i> synthesis of cdp‐d‐abequose using <i>salmonella</i> enzymes of cloned <i>rfb</i> genes : production of cdp‐6‐deoxy‐d‐<i>xylo</i> ‐4‐hexulose, cdp‐3,6‐dideoxy‐d‐<i>xylo</i> ‐4‐hexulose and cdp‐3,6‐dideoxy‐d‐galactose, and isolation by hplc
topic Biochemistry
url http://dx.doi.org/10.1111/j.1432-1033.1994.0863b.x
publishDate 1994
physical 863-872
description <jats:p> <jats:italic>In vitro</jats:italic> enzymic synthesis of CDP‐D‐abequose, CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose and CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was achieved using enzymes from cell extracts of cultures of <jats:italic>Escherichia coli</jats:italic> strains harbouring and expressing genes of the <jats:italic>rfb</jats:italic> gene cluster of <jats:italic>Salmonella enterica</jats:italic> LT2. From an initial synthesis step, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was isolated after 30 min reaction, using CDP‐D‐glucose, NAD and CDP‐glucose 4,6‐dehydratase, followed by protein precipitation and desalting by gel chromatography (yield 90.6%). From that intermediate, CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was produced in a reaction using NADH and a crude extract containing the required enzymes. CDP‐D‐abequose synthesis was performed either in the presence of excess NADH and NADPH or using an enzymic system which regenerates low concentrations of the coenzymes. In a two‐step reaction, CDP‐D‐glucose was first converted to CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose, then, following addition of the required coenzymes and enzymes, CDP‐D‐abequose was formed from this intermediary product in a 1‐h incubation. Starting from 250 mg CDP‐D‐glucose, the molar yield of CDP‐D‐abequose after protein precipitation and HPLC was 82%, corresponding to more than 200 mg. CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose was synthesised from α‐D‐[U<jats:sup>14</jats:sup>C]glucose 1‐phosphate and CTP using purified glucose‐1‐phosphate cytidylyltransferase in a reaction preceding the later steps. GC‐MS and NMR revealed that the hexose part of the end product was 3,6‐dideoxy‐D‐galactose (abequose) and that the corresponding intermediates were 4‐keto‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose and 4‐keto‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose, respectively. The synthesized CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose exhibited the characteristic ultraviolet light absorption at 318 nm but no corresponding absorption was found for CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose. A HPLC technique, where the four CDP‐sugars were baseline separated, was developed and used for enzyme assays and for the analysis of synthesized products.</jats:p>
container_issue 3
container_start_page 863
container_title European Journal of Biochemistry
container_volume 225
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792339152443801606
geogr_code not assigned
last_indexed 2024-03-01T15:43:25.77Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=In+vitro+Synthesis+of+CDP%E2%80%90D%E2%80%90Abequose+Using+Salmonella+Enzymes+of+Cloned+rfb+Genes+%3A+Production+of+CDP%E2%80%906%E2%80%90Deoxy%E2%80%90D%E2%80%90Xylo+%E2%80%904%E2%80%90Hexulose%2C+CDP%E2%80%903%2C6%E2%80%90Dideoxy%E2%80%90D%E2%80%90Xylo+%E2%80%904%E2%80%90Hexulose+and+CDP%E2%80%903%2C6%E2%80%90Dideoxy%E2%80%90D%E2%80%90Galactose%2C+and+Isolation+by+HPLC&rft.date=1994-11-01&genre=article&issn=1432-1033&volume=225&issue=3&spage=863&epage=872&pages=863-872&jtitle=European+Journal+of+Biochemistry&atitle=%3Ci%3EIn+vitro%3C%2Fi%3E+Synthesis+of+CDP%E2%80%90D%E2%80%90Abequose+Using+%3Ci%3ESalmonella%3C%2Fi%3E+Enzymes+of+Cloned+%3Ci%3Erfb%3C%2Fi%3E+Genes+%3A+Production+of+CDP%E2%80%906%E2%80%90Deoxy%E2%80%90D%E2%80%90%3Ci%3EXylo%3C%2Fi%3E+%E2%80%904%E2%80%90Hexulose%2C+CDP%E2%80%903%2C6%E2%80%90Dideoxy%E2%80%90D%E2%80%90%3Ci%3EXylo%3C%2Fi%3E+%E2%80%904%E2%80%90Hexulose+and+CDP%E2%80%903%2C6%E2%80%90Dideoxy%E2%80%90D%E2%80%90Galactose%2C+and+Isolation+by+HPLC&aulast=Lindberg&aufirst=Alf+A.&rft_id=info%3Adoi%2F10.1111%2Fj.1432-1033.1994.0863b.x&rft.language%5B0%5D=eng
SOLR
_version_ 1792339152443801606
author Lindqvist, Lennart, Schweda, K. H., Reeves, Peter R., Lindberg, Alf A.
author_facet Lindqvist, Lennart, Schweda, K. H., Reeves, Peter R., Lindberg, Alf A., Lindqvist, Lennart, Schweda, K. H., Reeves, Peter R., Lindberg, Alf A.
author_sort lindqvist, lennart
container_issue 3
container_start_page 863
container_title European Journal of Biochemistry
container_volume 225
description <jats:p> <jats:italic>In vitro</jats:italic> enzymic synthesis of CDP‐D‐abequose, CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose and CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was achieved using enzymes from cell extracts of cultures of <jats:italic>Escherichia coli</jats:italic> strains harbouring and expressing genes of the <jats:italic>rfb</jats:italic> gene cluster of <jats:italic>Salmonella enterica</jats:italic> LT2. From an initial synthesis step, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was isolated after 30 min reaction, using CDP‐D‐glucose, NAD and CDP‐glucose 4,6‐dehydratase, followed by protein precipitation and desalting by gel chromatography (yield 90.6%). From that intermediate, CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was produced in a reaction using NADH and a crude extract containing the required enzymes. CDP‐D‐abequose synthesis was performed either in the presence of excess NADH and NADPH or using an enzymic system which regenerates low concentrations of the coenzymes. In a two‐step reaction, CDP‐D‐glucose was first converted to CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose, then, following addition of the required coenzymes and enzymes, CDP‐D‐abequose was formed from this intermediary product in a 1‐h incubation. Starting from 250 mg CDP‐D‐glucose, the molar yield of CDP‐D‐abequose after protein precipitation and HPLC was 82%, corresponding to more than 200 mg. CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose was synthesised from α‐D‐[U<jats:sup>14</jats:sup>C]glucose 1‐phosphate and CTP using purified glucose‐1‐phosphate cytidylyltransferase in a reaction preceding the later steps. GC‐MS and NMR revealed that the hexose part of the end product was 3,6‐dideoxy‐D‐galactose (abequose) and that the corresponding intermediates were 4‐keto‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose and 4‐keto‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose, respectively. The synthesized CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose exhibited the characteristic ultraviolet light absorption at 318 nm but no corresponding absorption was found for CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose. A HPLC technique, where the four CDP‐sugars were baseline separated, was developed and used for enzyme assays and for the analysis of synthesized products.</jats:p>
doi_str_mv 10.1111/j.1432-1033.1994.0863b.x
facet_avail Online, Free
finc_class_facet Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTExMS9qLjE0MzItMTAzMy4xOTk0LjA4NjNiLng
imprint Wiley, 1994
imprint_str_mv Wiley, 1994
institution DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1
issn 0014-2956, 1432-1033
issn_str_mv 0014-2956, 1432-1033
language English
last_indexed 2024-03-01T15:43:25.77Z
match_str lindqvist1994invitrosynthesisofcdpdabequoseusingsalmonellaenzymesofclonedrfbgenesproductionofcdp6deoxydxylo4hexulosecdp36dideoxydxylo4hexuloseandcdp36dideoxydgalactoseandisolationbyhplcproductionofcdp6deoxydixyloi4hexulosecdp36dideoxydixyloi4hexuloseandcdp36dideoxydgalactoseandisolationbyhplc
mega_collection Wiley (CrossRef)
physical 863-872
publishDate 1994
publishDateSort 1994
publisher Wiley
record_format ai
recordtype ai
series European Journal of Biochemistry
source_id 49
spelling Lindqvist, Lennart Schweda, K. H. Reeves, Peter R. Lindberg, Alf A. 0014-2956 1432-1033 Wiley Biochemistry http://dx.doi.org/10.1111/j.1432-1033.1994.0863b.x <jats:p> <jats:italic>In vitro</jats:italic> enzymic synthesis of CDP‐D‐abequose, CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose and CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was achieved using enzymes from cell extracts of cultures of <jats:italic>Escherichia coli</jats:italic> strains harbouring and expressing genes of the <jats:italic>rfb</jats:italic> gene cluster of <jats:italic>Salmonella enterica</jats:italic> LT2. From an initial synthesis step, CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was isolated after 30 min reaction, using CDP‐D‐glucose, NAD and CDP‐glucose 4,6‐dehydratase, followed by protein precipitation and desalting by gel chromatography (yield 90.6%). From that intermediate, CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose was produced in a reaction using NADH and a crude extract containing the required enzymes. CDP‐D‐abequose synthesis was performed either in the presence of excess NADH and NADPH or using an enzymic system which regenerates low concentrations of the coenzymes. In a two‐step reaction, CDP‐D‐glucose was first converted to CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose, then, following addition of the required coenzymes and enzymes, CDP‐D‐abequose was formed from this intermediary product in a 1‐h incubation. Starting from 250 mg CDP‐D‐glucose, the molar yield of CDP‐D‐abequose after protein precipitation and HPLC was 82%, corresponding to more than 200 mg. CDP‐D‐[U‐<jats:sup>14</jats:sup>C]abequose was synthesised from α‐D‐[U<jats:sup>14</jats:sup>C]glucose 1‐phosphate and CTP using purified glucose‐1‐phosphate cytidylyltransferase in a reaction preceding the later steps. GC‐MS and NMR revealed that the hexose part of the end product was 3,6‐dideoxy‐D‐galactose (abequose) and that the corresponding intermediates were 4‐keto‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose and 4‐keto‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐hexose, respectively. The synthesized CDP‐6‐deoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose exhibited the characteristic ultraviolet light absorption at 318 nm but no corresponding absorption was found for CDP‐3,6‐dideoxy‐D‐<jats:italic>xylo</jats:italic> ‐4‐hexulose. A HPLC technique, where the four CDP‐sugars were baseline separated, was developed and used for enzyme assays and for the analysis of synthesized products.</jats:p> Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC <i>In vitro</i> Synthesis of CDP‐D‐Abequose Using <i>Salmonella</i> Enzymes of Cloned <i>rfb</i> Genes : Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC European Journal of Biochemistry
spellingShingle Lindqvist, Lennart, Schweda, K. H., Reeves, Peter R., Lindberg, Alf A., European Journal of Biochemistry, In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC, Biochemistry
title In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_full In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_fullStr In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_full_unstemmed In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_short In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_sort <i>in vitro</i> synthesis of cdp‐d‐abequose using <i>salmonella</i> enzymes of cloned <i>rfb</i> genes : production of cdp‐6‐deoxy‐d‐<i>xylo</i> ‐4‐hexulose, cdp‐3,6‐dideoxy‐d‐<i>xylo</i> ‐4‐hexulose and cdp‐3,6‐dideoxy‐d‐galactose, and isolation by hplc
title_sub Production of CDP‐6‐Deoxy‐D‐<i>Xylo</i> ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐<i>Xylo</i> ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
title_unstemmed In vitro Synthesis of CDP‐D‐Abequose Using Salmonella Enzymes of Cloned rfb Genes : Production of CDP‐6‐Deoxy‐D‐Xylo ‐4‐Hexulose, CDP‐3,6‐Dideoxy‐D‐Xylo ‐4‐Hexulose and CDP‐3,6‐Dideoxy‐D‐Galactose, and Isolation by HPLC
topic Biochemistry
url http://dx.doi.org/10.1111/j.1432-1033.1994.0863b.x