Details
Zusammenfassung: <jats:p>Histone methylation is now realized to be a pivotal regulator of gene transcription. Although recent studies have shed light on a<jats:italic>trans</jats:italic>-histone regulatory pathway that controls H3 Lys 4 and H3 Lys 79 methylation in<jats:italic>Saccharomyces cerevisiae</jats:italic>, the regulatory pathway that affects Set2-mediated H3 Lys 36 methylation is unknown. To determine the functions of Set2, and identify factors that regulate its site of methylation, we genomically tagged Set2 and identified its associated proteins. Here, we show that Set2 is associated with Rbp1 and Rbp2, the two largest subunits of RNA polymerase II (RNA pol II). Moreover, we find that this association is specific for the interaction of Set2 with the hyperphosphorylated form of RNA pol II. We further show that deletion of the RNA pol II C-terminal domain (CTD) kinase Ctk1, or partial deletion of the CTD, results in a selective abolishment of H3 Lys 36 methylation, implying a pathway of Set2 recruitment to chromatin and a role for H3 Lys 36 methylation in transcription elongation. In support, chromatin immunoprecipitation assays demonstrate the presence of Set2 methylation in the coding regions, as well as promoters, of genes regulated by Ctk1 or Set2. These data document a new link between histone methylation and the transcription apparatus and uncover a regulatory pathway that is selective for H3 Lys 36 methylation.</jats:p>
Umfang: 654-663
ISSN: 0890-9369
1549-5477
DOI: 10.1101/gad.1055503