author_facet Emmrich, Stephan
Keihani, Sarva
Reinhardt, Dirk
Klusmann, Jan-Henning
Emmrich, Stephan
Keihani, Sarva
Reinhardt, Dirk
Klusmann, Jan-Henning
author Emmrich, Stephan
Keihani, Sarva
Reinhardt, Dirk
Klusmann, Jan-Henning
spellingShingle Emmrich, Stephan
Keihani, Sarva
Reinhardt, Dirk
Klusmann, Jan-Henning
Blood
Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
Cell Biology
Hematology
Immunology
Biochemistry
author_sort emmrich, stephan
spelling Emmrich, Stephan Keihani, Sarva Reinhardt, Dirk Klusmann, Jan-Henning 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.3579.3579 <jats:title>Abstract</jats:title> <jats:p>MicroRNAs (miRNAs) reflect the best studied class of regulatory non-coding RNAs (ncRNAs), which control genetic networks with key cellular functions. In vertebrate genomes, a significant number of miRNA genes are located closely adjacent to each other in miRNA polycistrons. The mature miRNAs of the three human miR-99/100~125 clusters, each containing one miR-99/100, let-7 and miR-125 family member in identical polycistronic configuration, are processed from one single transcript and are highly expressed in acute promyelocytic leukemia (APL). Expression profiling by qPCR in sorted murine hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), megakaryocytic erythroid progenitors (MEPs) and granulocytic monocytic progenitors (GMPs) revealed high expression levels of miR-99/100 and miR-125 family members in HSCs and CMPs. However, the consequences of the coordinated expression of the miRNAs belonging to different seed families on self-renewal and proliferation of HSCs and myeloid progenitors and their contribution to the pathogenesis of APL are not well understood.</jats:p> <jats:p>To elucidate the genetic interactive network of miR-99/100~125 miRNAs and the role of each individual miRNA within this network, we generated a set of eight different constructs covering any permutation of miRNA family members from the two miR-99/100~125 clusters on hsa11 and hsa21 (miR-99a, miR-125b-2, let-7c, miR-99a/let-7c, miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2). Lentiviral overexpression of these constructs in human hematopoietic stem and progenitor cells (HSPCs) resulted in a significant reduction of monocytic/macrophage colony-forming units (CFU-M; 2.2-2.8-fold, p≤0.05) and granulocytic CFU-Gs (2-4.3-fold, p≤0.05) in methylcellulose-based CFU assays exclusively for miR-125-containing bi-/tricistronic constructs (miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2), but not for the single miRNA expression constructs. Accordingly, during myelomonocytic differentiation HSPCs transduced with those miR-125-containing bi-/tricistronic constructs gave rise to a major population of monomorphic, non-adherent cells devoid of granulocytic and monocytic markers, which was not present in single miRNA-transduced cells. In murine isogenic transplantation experiments (N=105), only the combined miRNA expression of miR-125b with let-7 and/or miR-99/100 led to the expansion and retention of immature Gr-1(low)/Mac-1(+)/B220(-) cells in the bone marrow (1.6-1.8fold; p≤0.01). Accordingly, either the CMP or GMP compartment of transplanted mice was expanded in miR-125-containing bi-/tricistronic constructs (CMPs 1.6-fold in let-7a-2/miR-125b-1, GMPs 1.8-1.9-fold in miR-100/miR-125b-1 and tricistrons; p≤0.01;), but not upon single miRNA overexpression (1.1-1.3-fold; p≥0.1).</jats:p> <jats:p>Global gene expression profiling of human HSPCs transduced with the eight miRNA constructs revealed a core expression signature commonly regulated by the four miR-125b-containing bi-/ tricistronic constructs (367 genes upregulated [&gt;1.5-fold]; 417 genes downregulated). Strikingly, this core signature is enriched for genes with concordant expression in leukemic stem cells (LSCs) and HSCs (FDR q≤1.8x10-14). The genes of the core signature were not or only modestly affected in the context of the single miRNAs.</jats:p> <jats:p>Thus, the miR-99/100~125 tricistron miRNAs form an interaction network, wherein the combined activity of miR-125b with let-7 and/or miR-99/100 family members converged to induce a stem cell signature creating a synthetic phenotype. The synthetic phenotype can only be observed in the combination of two or all three miRNAs but not for each miRNA alone, and is generated by miR-99/100 and/or let-7 altering the hematologically dominant miR-125 phenotype. This interactive network might explain the genomic miR-99/100~125 clustering and reveals a novel cooperative mode to induce self-renewal and a differentiation block in myeloid progenitor cells, predisposing them to leukemic transformation in APL.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder Blood
doi_str_mv 10.1182/blood.v126.23.3579.3579
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjM1NzkuMzU3OQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjM1NzkuMzU3OQ
institution DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
issn 1528-0020
0006-4971
issn_str_mv 1528-0020
0006-4971
language English
mega_collection American Society of Hematology (CrossRef)
match_str emmrich2015membersofthemir99100125tricistronscooperativelyinduceapreleukemicmyeloproliferativedisorder
publishDateSort 2015
publisher American Society of Hematology
recordtype ai
record_format ai
series Blood
source_id 49
title Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_unstemmed Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_full Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_fullStr Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_full_unstemmed Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_short Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_sort members of the mir-99/100~125 tricistrons cooperatively induce a pre-leukemic myeloproliferative disorder
topic Cell Biology
Hematology
Immunology
Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.3579.3579
publishDate 2015
physical 3579-3579
description <jats:title>Abstract</jats:title> <jats:p>MicroRNAs (miRNAs) reflect the best studied class of regulatory non-coding RNAs (ncRNAs), which control genetic networks with key cellular functions. In vertebrate genomes, a significant number of miRNA genes are located closely adjacent to each other in miRNA polycistrons. The mature miRNAs of the three human miR-99/100~125 clusters, each containing one miR-99/100, let-7 and miR-125 family member in identical polycistronic configuration, are processed from one single transcript and are highly expressed in acute promyelocytic leukemia (APL). Expression profiling by qPCR in sorted murine hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), megakaryocytic erythroid progenitors (MEPs) and granulocytic monocytic progenitors (GMPs) revealed high expression levels of miR-99/100 and miR-125 family members in HSCs and CMPs. However, the consequences of the coordinated expression of the miRNAs belonging to different seed families on self-renewal and proliferation of HSCs and myeloid progenitors and their contribution to the pathogenesis of APL are not well understood.</jats:p> <jats:p>To elucidate the genetic interactive network of miR-99/100~125 miRNAs and the role of each individual miRNA within this network, we generated a set of eight different constructs covering any permutation of miRNA family members from the two miR-99/100~125 clusters on hsa11 and hsa21 (miR-99a, miR-125b-2, let-7c, miR-99a/let-7c, miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2). Lentiviral overexpression of these constructs in human hematopoietic stem and progenitor cells (HSPCs) resulted in a significant reduction of monocytic/macrophage colony-forming units (CFU-M; 2.2-2.8-fold, p≤0.05) and granulocytic CFU-Gs (2-4.3-fold, p≤0.05) in methylcellulose-based CFU assays exclusively for miR-125-containing bi-/tricistronic constructs (miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2), but not for the single miRNA expression constructs. Accordingly, during myelomonocytic differentiation HSPCs transduced with those miR-125-containing bi-/tricistronic constructs gave rise to a major population of monomorphic, non-adherent cells devoid of granulocytic and monocytic markers, which was not present in single miRNA-transduced cells. In murine isogenic transplantation experiments (N=105), only the combined miRNA expression of miR-125b with let-7 and/or miR-99/100 led to the expansion and retention of immature Gr-1(low)/Mac-1(+)/B220(-) cells in the bone marrow (1.6-1.8fold; p≤0.01). Accordingly, either the CMP or GMP compartment of transplanted mice was expanded in miR-125-containing bi-/tricistronic constructs (CMPs 1.6-fold in let-7a-2/miR-125b-1, GMPs 1.8-1.9-fold in miR-100/miR-125b-1 and tricistrons; p≤0.01;), but not upon single miRNA overexpression (1.1-1.3-fold; p≥0.1).</jats:p> <jats:p>Global gene expression profiling of human HSPCs transduced with the eight miRNA constructs revealed a core expression signature commonly regulated by the four miR-125b-containing bi-/ tricistronic constructs (367 genes upregulated [&gt;1.5-fold]; 417 genes downregulated). Strikingly, this core signature is enriched for genes with concordant expression in leukemic stem cells (LSCs) and HSCs (FDR q≤1.8x10-14). The genes of the core signature were not or only modestly affected in the context of the single miRNAs.</jats:p> <jats:p>Thus, the miR-99/100~125 tricistron miRNAs form an interaction network, wherein the combined activity of miR-125b with let-7 and/or miR-99/100 family members converged to induce a stem cell signature creating a synthetic phenotype. The synthetic phenotype can only be observed in the combination of two or all three miRNAs but not for each miRNA alone, and is generated by miR-99/100 and/or let-7 altering the hematologically dominant miR-125 phenotype. This interactive network might explain the genomic miR-99/100~125 clustering and reveals a novel cooperative mode to induce self-renewal and a differentiation block in myeloid progenitor cells, predisposing them to leukemic transformation in APL.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
container_issue 23
container_start_page 3579
container_title Blood
container_volume 126
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792327105970700301
geogr_code not assigned
last_indexed 2024-03-01T12:32:05.905Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Members+of+the+Mir-99%2F100%7E125+Tricistrons+Cooperatively+Induce+a+Pre-Leukemic+Myeloproliferative+Disorder&rft.date=2015-12-03&genre=article&issn=1528-0020&volume=126&issue=23&spage=3579&epage=3579&pages=3579-3579&jtitle=Blood&atitle=Members+of+the+Mir-99%2F100%7E125+Tricistrons+Cooperatively+Induce+a+Pre-Leukemic+Myeloproliferative+Disorder&aulast=Klusmann&aufirst=Jan-Henning&rft_id=info%3Adoi%2F10.1182%2Fblood.v126.23.3579.3579&rft.language%5B0%5D=eng
SOLR
_version_ 1792327105970700301
author Emmrich, Stephan, Keihani, Sarva, Reinhardt, Dirk, Klusmann, Jan-Henning
author_facet Emmrich, Stephan, Keihani, Sarva, Reinhardt, Dirk, Klusmann, Jan-Henning, Emmrich, Stephan, Keihani, Sarva, Reinhardt, Dirk, Klusmann, Jan-Henning
author_sort emmrich, stephan
container_issue 23
container_start_page 3579
container_title Blood
container_volume 126
description <jats:title>Abstract</jats:title> <jats:p>MicroRNAs (miRNAs) reflect the best studied class of regulatory non-coding RNAs (ncRNAs), which control genetic networks with key cellular functions. In vertebrate genomes, a significant number of miRNA genes are located closely adjacent to each other in miRNA polycistrons. The mature miRNAs of the three human miR-99/100~125 clusters, each containing one miR-99/100, let-7 and miR-125 family member in identical polycistronic configuration, are processed from one single transcript and are highly expressed in acute promyelocytic leukemia (APL). Expression profiling by qPCR in sorted murine hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), megakaryocytic erythroid progenitors (MEPs) and granulocytic monocytic progenitors (GMPs) revealed high expression levels of miR-99/100 and miR-125 family members in HSCs and CMPs. However, the consequences of the coordinated expression of the miRNAs belonging to different seed families on self-renewal and proliferation of HSCs and myeloid progenitors and their contribution to the pathogenesis of APL are not well understood.</jats:p> <jats:p>To elucidate the genetic interactive network of miR-99/100~125 miRNAs and the role of each individual miRNA within this network, we generated a set of eight different constructs covering any permutation of miRNA family members from the two miR-99/100~125 clusters on hsa11 and hsa21 (miR-99a, miR-125b-2, let-7c, miR-99a/let-7c, miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2). Lentiviral overexpression of these constructs in human hematopoietic stem and progenitor cells (HSPCs) resulted in a significant reduction of monocytic/macrophage colony-forming units (CFU-M; 2.2-2.8-fold, p≤0.05) and granulocytic CFU-Gs (2-4.3-fold, p≤0.05) in methylcellulose-based CFU assays exclusively for miR-125-containing bi-/tricistronic constructs (miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2), but not for the single miRNA expression constructs. Accordingly, during myelomonocytic differentiation HSPCs transduced with those miR-125-containing bi-/tricistronic constructs gave rise to a major population of monomorphic, non-adherent cells devoid of granulocytic and monocytic markers, which was not present in single miRNA-transduced cells. In murine isogenic transplantation experiments (N=105), only the combined miRNA expression of miR-125b with let-7 and/or miR-99/100 led to the expansion and retention of immature Gr-1(low)/Mac-1(+)/B220(-) cells in the bone marrow (1.6-1.8fold; p≤0.01). Accordingly, either the CMP or GMP compartment of transplanted mice was expanded in miR-125-containing bi-/tricistronic constructs (CMPs 1.6-fold in let-7a-2/miR-125b-1, GMPs 1.8-1.9-fold in miR-100/miR-125b-1 and tricistrons; p≤0.01;), but not upon single miRNA overexpression (1.1-1.3-fold; p≥0.1).</jats:p> <jats:p>Global gene expression profiling of human HSPCs transduced with the eight miRNA constructs revealed a core expression signature commonly regulated by the four miR-125b-containing bi-/ tricistronic constructs (367 genes upregulated [&gt;1.5-fold]; 417 genes downregulated). Strikingly, this core signature is enriched for genes with concordant expression in leukemic stem cells (LSCs) and HSCs (FDR q≤1.8x10-14). The genes of the core signature were not or only modestly affected in the context of the single miRNAs.</jats:p> <jats:p>Thus, the miR-99/100~125 tricistron miRNAs form an interaction network, wherein the combined activity of miR-125b with let-7 and/or miR-99/100 family members converged to induce a stem cell signature creating a synthetic phenotype. The synthetic phenotype can only be observed in the combination of two or all three miRNAs but not for each miRNA alone, and is generated by miR-99/100 and/or let-7 altering the hematologically dominant miR-125 phenotype. This interactive network might explain the genomic miR-99/100~125 clustering and reveals a novel cooperative mode to induce self-renewal and a differentiation block in myeloid progenitor cells, predisposing them to leukemic transformation in APL.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec>
doi_str_mv 10.1182/blood.v126.23.3579.3579
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI2LjIzLjM1NzkuMzU3OQ
imprint American Society of Hematology, 2015
imprint_str_mv American Society of Hematology, 2015
institution DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1528-0020, 0006-4971
issn_str_mv 1528-0020, 0006-4971
language English
last_indexed 2024-03-01T12:32:05.905Z
match_str emmrich2015membersofthemir99100125tricistronscooperativelyinduceapreleukemicmyeloproliferativedisorder
mega_collection American Society of Hematology (CrossRef)
physical 3579-3579
publishDate 2015
publishDateSort 2015
publisher American Society of Hematology
record_format ai
recordtype ai
series Blood
source_id 49
spelling Emmrich, Stephan Keihani, Sarva Reinhardt, Dirk Klusmann, Jan-Henning 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v126.23.3579.3579 <jats:title>Abstract</jats:title> <jats:p>MicroRNAs (miRNAs) reflect the best studied class of regulatory non-coding RNAs (ncRNAs), which control genetic networks with key cellular functions. In vertebrate genomes, a significant number of miRNA genes are located closely adjacent to each other in miRNA polycistrons. The mature miRNAs of the three human miR-99/100~125 clusters, each containing one miR-99/100, let-7 and miR-125 family member in identical polycistronic configuration, are processed from one single transcript and are highly expressed in acute promyelocytic leukemia (APL). Expression profiling by qPCR in sorted murine hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), megakaryocytic erythroid progenitors (MEPs) and granulocytic monocytic progenitors (GMPs) revealed high expression levels of miR-99/100 and miR-125 family members in HSCs and CMPs. However, the consequences of the coordinated expression of the miRNAs belonging to different seed families on self-renewal and proliferation of HSCs and myeloid progenitors and their contribution to the pathogenesis of APL are not well understood.</jats:p> <jats:p>To elucidate the genetic interactive network of miR-99/100~125 miRNAs and the role of each individual miRNA within this network, we generated a set of eight different constructs covering any permutation of miRNA family members from the two miR-99/100~125 clusters on hsa11 and hsa21 (miR-99a, miR-125b-2, let-7c, miR-99a/let-7c, miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2). Lentiviral overexpression of these constructs in human hematopoietic stem and progenitor cells (HSPCs) resulted in a significant reduction of monocytic/macrophage colony-forming units (CFU-M; 2.2-2.8-fold, p≤0.05) and granulocytic CFU-Gs (2-4.3-fold, p≤0.05) in methylcellulose-based CFU assays exclusively for miR-125-containing bi-/tricistronic constructs (miR-100/miR-125b-1, let-7a-2/miR-125b-1, miR-100/let-7a-2/miR-125b-1 and miR-99a/let-7c/miR-125b-2), but not for the single miRNA expression constructs. Accordingly, during myelomonocytic differentiation HSPCs transduced with those miR-125-containing bi-/tricistronic constructs gave rise to a major population of monomorphic, non-adherent cells devoid of granulocytic and monocytic markers, which was not present in single miRNA-transduced cells. In murine isogenic transplantation experiments (N=105), only the combined miRNA expression of miR-125b with let-7 and/or miR-99/100 led to the expansion and retention of immature Gr-1(low)/Mac-1(+)/B220(-) cells in the bone marrow (1.6-1.8fold; p≤0.01). Accordingly, either the CMP or GMP compartment of transplanted mice was expanded in miR-125-containing bi-/tricistronic constructs (CMPs 1.6-fold in let-7a-2/miR-125b-1, GMPs 1.8-1.9-fold in miR-100/miR-125b-1 and tricistrons; p≤0.01;), but not upon single miRNA overexpression (1.1-1.3-fold; p≥0.1).</jats:p> <jats:p>Global gene expression profiling of human HSPCs transduced with the eight miRNA constructs revealed a core expression signature commonly regulated by the four miR-125b-containing bi-/ tricistronic constructs (367 genes upregulated [&gt;1.5-fold]; 417 genes downregulated). Strikingly, this core signature is enriched for genes with concordant expression in leukemic stem cells (LSCs) and HSCs (FDR q≤1.8x10-14). The genes of the core signature were not or only modestly affected in the context of the single miRNAs.</jats:p> <jats:p>Thus, the miR-99/100~125 tricistron miRNAs form an interaction network, wherein the combined activity of miR-125b with let-7 and/or miR-99/100 family members converged to induce a stem cell signature creating a synthetic phenotype. The synthetic phenotype can only be observed in the combination of two or all three miRNAs but not for each miRNA alone, and is generated by miR-99/100 and/or let-7 altering the hematologically dominant miR-125 phenotype. This interactive network might explain the genomic miR-99/100~125 clustering and reveals a novel cooperative mode to induce self-renewal and a differentiation block in myeloid progenitor cells, predisposing them to leukemic transformation in APL.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>No relevant conflicts of interest to declare.</jats:p> </jats:sec> Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder Blood
spellingShingle Emmrich, Stephan, Keihani, Sarva, Reinhardt, Dirk, Klusmann, Jan-Henning, Blood, Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder, Cell Biology, Hematology, Immunology, Biochemistry
title Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_full Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_fullStr Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_full_unstemmed Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_short Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
title_sort members of the mir-99/100~125 tricistrons cooperatively induce a pre-leukemic myeloproliferative disorder
title_unstemmed Members of the Mir-99/100~125 Tricistrons Cooperatively Induce a Pre-Leukemic Myeloproliferative Disorder
topic Cell Biology, Hematology, Immunology, Biochemistry
url http://dx.doi.org/10.1182/blood.v126.23.3579.3579