Eintrag weiter verarbeiten

In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes...

Gespeichert in:

Bibliographische Detailangaben
Zeitschriftentitel: Blood
Personen und Körperschaften: Chen, Shih-Shih, Chang, Betty Y., Chang, Stella, Tong, Timothy, Zou, Yong-Rui, Sherry, Barbara, Buggy, Joseph J., Burger, Jan A., Rai, Kanti R., Chiorazzi, Nicholas
In: Blood, 124, 2014, 21, S. 1948-1948
Format: E-Article
Sprache: Englisch
veröffentlicht:
American Society of Hematology
Schlagwörter:
author_facet Chen, Shih-Shih
Chang, Betty Y.
Chang, Stella
Tong, Timothy
Zou, Yong-Rui
Sherry, Barbara
Buggy, Joseph J.
Burger, Jan A.
Rai, Kanti R.
Chiorazzi, Nicholas
Chen, Shih-Shih
Chang, Betty Y.
Chang, Stella
Tong, Timothy
Zou, Yong-Rui
Sherry, Barbara
Buggy, Joseph J.
Burger, Jan A.
Rai, Kanti R.
Chiorazzi, Nicholas
author Chen, Shih-Shih
Chang, Betty Y.
Chang, Stella
Tong, Timothy
Zou, Yong-Rui
Sherry, Barbara
Buggy, Joseph J.
Burger, Jan A.
Rai, Kanti R.
Chiorazzi, Nicholas
spellingShingle Chen, Shih-Shih
Chang, Betty Y.
Chang, Stella
Tong, Timothy
Zou, Yong-Rui
Sherry, Barbara
Buggy, Joseph J.
Burger, Jan A.
Rai, Kanti R.
Chiorazzi, Nicholas
Blood
In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
Cell Biology
Hematology
Immunology
Biochemistry
author_sort chen, shih-shih
spelling Chen, Shih-Shih Chang, Betty Y. Chang, Stella Tong, Timothy Zou, Yong-Rui Sherry, Barbara Buggy, Joseph J. Burger, Jan A. Rai, Kanti R. Chiorazzi, Nicholas 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v124.21.1948.1948 <jats:title>Abstract</jats:title> <jats:p>The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has been approved by the FDA for the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Patients receiving this treatment often develop lymphocytosis and concomitant reduced organomegaly. These actions of ibrutinib are believed due to egress of CLL cells from lymphoid compartments, although the mechanism(s) responsible for this are not clear.</jats:p> <jats:p>Overexpressed surface membrane chemokine receptor CXCR4 (smCXCR4) is a hallmark of CLL cells and is involved in CLL cell migration and interaction with protective niches. Surface expression of CXCR4 is regulated by phosphorylation at serine/theronine residues in the receptor’s cytoplasmic tail. Kinases including GRK and PIM are known to regulate phosphorylation and surface expression of CXCR4. The transcript and protein levels of BTK, GRK and PIM also correlate with smCXCR4 expression.</jats:p> <jats:p>Here we studied the effect of ibrutinib on CLL cell distribution using TCL1-192 cells, a clonal murine cell line that mimics aggressive CLL and involves active B-cell antigen receptor (BCR) signaling. Similar to patients, TCL1-192-bearing mice receiving ibrutinib developed almost immediately (≤ 1 hour) lymphocytosis that consisted of both non-divided and recently-divided cells. While TCL1-192 cells overexpress smCXCR4, ibrutinib promoted lymphocytosis was associated with a fall in smCXCR4 to a level similar to that on normal B cells from wild type C3H/B6 mice. Reduced levels of smCXCR4 were also observed at the later timepoints when mice still had the continued release of cells into circulation even though lymphocytosis was no longer evident. Despite this change in smCXCR4 expression, total CXCR4 was not changed after ibrutinib treatment.</jats:p> <jats:p>Importantly, cells obtained from ibrutinib treated animals that had reduced levels of smCXCR4 also failed to respond to their ligand CXCL12 in vitro, as measured by absence of smCXCR4 internalization or calcium mobilization. Furthermore, re-expression of smCXCR4 after withdrawal of CXCL12 was not observed in treated cells. We therefore next studied in vitro the mechanism whereby ibrutinib lowered smCXCR4 expression. Western blot analysis using cells treated with ibrutinib at the dose ≥0.1μM at 37⁰C for 2 hours in the presence of CXCL12 showed significantly reduced levels of phosphorylated CXCR4 at Ser339. Phosphorylation of Ser339 in the CXCR4 intracellular domain is known to be essential for normal receptor recycling, hyper-phosphorylated CXCR4 on Ser339 is associated with overexpressed smCXCR4 in CLL patient cells. Correlating with this, TCL1-192 cells treated with ibrutinib at 0.1μM not only de-phosphorylated CXCR4 on Ser339, but also significantly enhanced internalization of smCXCR4 after CXCL12 stimulation.</jats:p> <jats:p>We then examined the kinases responsible for the de-phosphorylation of CXCR4. Western blot analysis of CLL cells from animals treated with ibrutinib for 4 weeks showed minimal levels of total BTK protein. There was a direct positive correlation in between BTK protein expression and smCXCR4 expression. In addition to BTK, reduced levels of kinases known to regulate CXCR4 phosphorylation on Ser339 were also observed in cells collected from ibrutinib treated mice. Together, these results suggest blocking BTK, directly or indirectly causes de-phosphorylation of CXCR4, resulting in impaired smCXCR4 recycling and blocked CXCL12 signaling.</jats:p> <jats:p>The function of CXCR4 is dependent on its location on the cell membrane. Impaired CXCR4 recycling after ibrutinib treatment would lead to defective cell trafficking. Indeed, cell transfer studies involving TCL1-192 cells previously treated with ibrutinib indicated that persistent decrease in smCXCR4, which was ibrutinib-dependent, blocked the return of CLL cells to solid tissue niches. Finally, ibrutinib-fed mice eventually developed lower lymphocyte counts, reduced organomegaly, and prolonged survival. Ibrutinib-fed mice also had defective response to BCR stimulation, including abolished calcium mobilization, blocked cell proliferation and survival after anti-IgM antibody stimulation. Together, the data provide direct in vivo evidence of ibrutinib impairing CLL cell homing and retention and suggest a mechanism by which BTK targeted therapy affects not only BCR signaling but also CXCR4 phosphorylation and signaling, with the latter contributing to defective smCXCR4 expression.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>Chang: Pharmacyclics, Inc: Employment, Equity Ownership. Chang:Pharmacyclics: Employment. Buggy:Pharmacyclics: Employment. Burger:Pharmacyclics: Consultancy, Honoraria, Research Funding.</jats:p> </jats:sec> In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues Blood
doi_str_mv 10.1182/blood.v124.21.1948.1948
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Chemie und Pharmazie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI0LjIxLjE5NDguMTk0OA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI0LjIxLjE5NDguMTk0OA
institution DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
imprint American Society of Hematology, 2014
imprint_str_mv American Society of Hematology, 2014
issn 0006-4971
1528-0020
issn_str_mv 0006-4971
1528-0020
language English
mega_collection American Society of Hematology (CrossRef)
match_str chen2014invivoevidencethatibrutininbderegulateschemokinereceptorcxcr4surfacemembraneexpressionandsignalingalongwithinhibitingbcellantigenreceptorsignalingascausesfordefectivehomingandimpairedretentionofcllcellsintissues
publishDateSort 2014
publisher American Society of Hematology
recordtype ai
record_format ai
series Blood
source_id 49
title In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_unstemmed In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_full In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_fullStr In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_full_unstemmed In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_short In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_sort in vivo evidence that ibrutininb deregulates chemokine receptor cxcr4 surface membrane expression and signaling, along with inhibiting b cell antigen receptor signaling, as causes for defective homing and impaired retention of cll cells in tissues
topic Cell Biology
Hematology
Immunology
Biochemistry
url http://dx.doi.org/10.1182/blood.v124.21.1948.1948
publishDate 2014
physical 1948-1948
description <jats:title>Abstract</jats:title> <jats:p>The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has been approved by the FDA for the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Patients receiving this treatment often develop lymphocytosis and concomitant reduced organomegaly. These actions of ibrutinib are believed due to egress of CLL cells from lymphoid compartments, although the mechanism(s) responsible for this are not clear.</jats:p> <jats:p>Overexpressed surface membrane chemokine receptor CXCR4 (smCXCR4) is a hallmark of CLL cells and is involved in CLL cell migration and interaction with protective niches. Surface expression of CXCR4 is regulated by phosphorylation at serine/theronine residues in the receptor’s cytoplasmic tail. Kinases including GRK and PIM are known to regulate phosphorylation and surface expression of CXCR4. The transcript and protein levels of BTK, GRK and PIM also correlate with smCXCR4 expression.</jats:p> <jats:p>Here we studied the effect of ibrutinib on CLL cell distribution using TCL1-192 cells, a clonal murine cell line that mimics aggressive CLL and involves active B-cell antigen receptor (BCR) signaling. Similar to patients, TCL1-192-bearing mice receiving ibrutinib developed almost immediately (≤ 1 hour) lymphocytosis that consisted of both non-divided and recently-divided cells. While TCL1-192 cells overexpress smCXCR4, ibrutinib promoted lymphocytosis was associated with a fall in smCXCR4 to a level similar to that on normal B cells from wild type C3H/B6 mice. Reduced levels of smCXCR4 were also observed at the later timepoints when mice still had the continued release of cells into circulation even though lymphocytosis was no longer evident. Despite this change in smCXCR4 expression, total CXCR4 was not changed after ibrutinib treatment.</jats:p> <jats:p>Importantly, cells obtained from ibrutinib treated animals that had reduced levels of smCXCR4 also failed to respond to their ligand CXCL12 in vitro, as measured by absence of smCXCR4 internalization or calcium mobilization. Furthermore, re-expression of smCXCR4 after withdrawal of CXCL12 was not observed in treated cells. We therefore next studied in vitro the mechanism whereby ibrutinib lowered smCXCR4 expression. Western blot analysis using cells treated with ibrutinib at the dose ≥0.1μM at 37⁰C for 2 hours in the presence of CXCL12 showed significantly reduced levels of phosphorylated CXCR4 at Ser339. Phosphorylation of Ser339 in the CXCR4 intracellular domain is known to be essential for normal receptor recycling, hyper-phosphorylated CXCR4 on Ser339 is associated with overexpressed smCXCR4 in CLL patient cells. Correlating with this, TCL1-192 cells treated with ibrutinib at 0.1μM not only de-phosphorylated CXCR4 on Ser339, but also significantly enhanced internalization of smCXCR4 after CXCL12 stimulation.</jats:p> <jats:p>We then examined the kinases responsible for the de-phosphorylation of CXCR4. Western blot analysis of CLL cells from animals treated with ibrutinib for 4 weeks showed minimal levels of total BTK protein. There was a direct positive correlation in between BTK protein expression and smCXCR4 expression. In addition to BTK, reduced levels of kinases known to regulate CXCR4 phosphorylation on Ser339 were also observed in cells collected from ibrutinib treated mice. Together, these results suggest blocking BTK, directly or indirectly causes de-phosphorylation of CXCR4, resulting in impaired smCXCR4 recycling and blocked CXCL12 signaling.</jats:p> <jats:p>The function of CXCR4 is dependent on its location on the cell membrane. Impaired CXCR4 recycling after ibrutinib treatment would lead to defective cell trafficking. Indeed, cell transfer studies involving TCL1-192 cells previously treated with ibrutinib indicated that persistent decrease in smCXCR4, which was ibrutinib-dependent, blocked the return of CLL cells to solid tissue niches. Finally, ibrutinib-fed mice eventually developed lower lymphocyte counts, reduced organomegaly, and prolonged survival. Ibrutinib-fed mice also had defective response to BCR stimulation, including abolished calcium mobilization, blocked cell proliferation and survival after anti-IgM antibody stimulation. Together, the data provide direct in vivo evidence of ibrutinib impairing CLL cell homing and retention and suggest a mechanism by which BTK targeted therapy affects not only BCR signaling but also CXCR4 phosphorylation and signaling, with the latter contributing to defective smCXCR4 expression.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>Chang: Pharmacyclics, Inc: Employment, Equity Ownership. Chang:Pharmacyclics: Employment. Buggy:Pharmacyclics: Employment. Burger:Pharmacyclics: Consultancy, Honoraria, Research Funding.</jats:p> </jats:sec>
container_issue 21
container_start_page 1948
container_title Blood
container_volume 124
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792334555939602436
geogr_code not assigned
last_indexed 2024-03-01T14:30:30.585Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=In+Vivo+Evidence+That+Ibrutininb+Deregulates+Chemokine+Receptor+CXCR4+Surface+Membrane+Expression+and+Signaling%2C+Along+with+Inhibiting+B+Cell+Antigen+Receptor+Signaling%2C+As+Causes+for+Defective+Homing+and+Impaired+Retention+of+CLL+Cells+in+Tissues&rft.date=2014-12-06&genre=article&issn=1528-0020&volume=124&issue=21&spage=1948&epage=1948&pages=1948-1948&jtitle=Blood&atitle=In+Vivo+Evidence+That+Ibrutininb+Deregulates+Chemokine+Receptor+CXCR4+Surface+Membrane+Expression+and+Signaling%2C+Along+with+Inhibiting+B+Cell+Antigen+Receptor+Signaling%2C+As+Causes+for+Defective+Homing+and+Impaired+Retention+of+CLL+Cells+in+Tissues&aulast=Chiorazzi&aufirst=Nicholas&rft_id=info%3Adoi%2F10.1182%2Fblood.v124.21.1948.1948&rft.language%5B0%5D=eng
SOLR
_version_ 1792334555939602436
author Chen, Shih-Shih, Chang, Betty Y., Chang, Stella, Tong, Timothy, Zou, Yong-Rui, Sherry, Barbara, Buggy, Joseph J., Burger, Jan A., Rai, Kanti R., Chiorazzi, Nicholas
author_facet Chen, Shih-Shih, Chang, Betty Y., Chang, Stella, Tong, Timothy, Zou, Yong-Rui, Sherry, Barbara, Buggy, Joseph J., Burger, Jan A., Rai, Kanti R., Chiorazzi, Nicholas, Chen, Shih-Shih, Chang, Betty Y., Chang, Stella, Tong, Timothy, Zou, Yong-Rui, Sherry, Barbara, Buggy, Joseph J., Burger, Jan A., Rai, Kanti R., Chiorazzi, Nicholas
author_sort chen, shih-shih
container_issue 21
container_start_page 1948
container_title Blood
container_volume 124
description <jats:title>Abstract</jats:title> <jats:p>The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has been approved by the FDA for the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Patients receiving this treatment often develop lymphocytosis and concomitant reduced organomegaly. These actions of ibrutinib are believed due to egress of CLL cells from lymphoid compartments, although the mechanism(s) responsible for this are not clear.</jats:p> <jats:p>Overexpressed surface membrane chemokine receptor CXCR4 (smCXCR4) is a hallmark of CLL cells and is involved in CLL cell migration and interaction with protective niches. Surface expression of CXCR4 is regulated by phosphorylation at serine/theronine residues in the receptor’s cytoplasmic tail. Kinases including GRK and PIM are known to regulate phosphorylation and surface expression of CXCR4. The transcript and protein levels of BTK, GRK and PIM also correlate with smCXCR4 expression.</jats:p> <jats:p>Here we studied the effect of ibrutinib on CLL cell distribution using TCL1-192 cells, a clonal murine cell line that mimics aggressive CLL and involves active B-cell antigen receptor (BCR) signaling. Similar to patients, TCL1-192-bearing mice receiving ibrutinib developed almost immediately (≤ 1 hour) lymphocytosis that consisted of both non-divided and recently-divided cells. While TCL1-192 cells overexpress smCXCR4, ibrutinib promoted lymphocytosis was associated with a fall in smCXCR4 to a level similar to that on normal B cells from wild type C3H/B6 mice. Reduced levels of smCXCR4 were also observed at the later timepoints when mice still had the continued release of cells into circulation even though lymphocytosis was no longer evident. Despite this change in smCXCR4 expression, total CXCR4 was not changed after ibrutinib treatment.</jats:p> <jats:p>Importantly, cells obtained from ibrutinib treated animals that had reduced levels of smCXCR4 also failed to respond to their ligand CXCL12 in vitro, as measured by absence of smCXCR4 internalization or calcium mobilization. Furthermore, re-expression of smCXCR4 after withdrawal of CXCL12 was not observed in treated cells. We therefore next studied in vitro the mechanism whereby ibrutinib lowered smCXCR4 expression. Western blot analysis using cells treated with ibrutinib at the dose ≥0.1μM at 37⁰C for 2 hours in the presence of CXCL12 showed significantly reduced levels of phosphorylated CXCR4 at Ser339. Phosphorylation of Ser339 in the CXCR4 intracellular domain is known to be essential for normal receptor recycling, hyper-phosphorylated CXCR4 on Ser339 is associated with overexpressed smCXCR4 in CLL patient cells. Correlating with this, TCL1-192 cells treated with ibrutinib at 0.1μM not only de-phosphorylated CXCR4 on Ser339, but also significantly enhanced internalization of smCXCR4 after CXCL12 stimulation.</jats:p> <jats:p>We then examined the kinases responsible for the de-phosphorylation of CXCR4. Western blot analysis of CLL cells from animals treated with ibrutinib for 4 weeks showed minimal levels of total BTK protein. There was a direct positive correlation in between BTK protein expression and smCXCR4 expression. In addition to BTK, reduced levels of kinases known to regulate CXCR4 phosphorylation on Ser339 were also observed in cells collected from ibrutinib treated mice. Together, these results suggest blocking BTK, directly or indirectly causes de-phosphorylation of CXCR4, resulting in impaired smCXCR4 recycling and blocked CXCL12 signaling.</jats:p> <jats:p>The function of CXCR4 is dependent on its location on the cell membrane. Impaired CXCR4 recycling after ibrutinib treatment would lead to defective cell trafficking. Indeed, cell transfer studies involving TCL1-192 cells previously treated with ibrutinib indicated that persistent decrease in smCXCR4, which was ibrutinib-dependent, blocked the return of CLL cells to solid tissue niches. Finally, ibrutinib-fed mice eventually developed lower lymphocyte counts, reduced organomegaly, and prolonged survival. Ibrutinib-fed mice also had defective response to BCR stimulation, including abolished calcium mobilization, blocked cell proliferation and survival after anti-IgM antibody stimulation. Together, the data provide direct in vivo evidence of ibrutinib impairing CLL cell homing and retention and suggest a mechanism by which BTK targeted therapy affects not only BCR signaling but also CXCR4 phosphorylation and signaling, with the latter contributing to defective smCXCR4 expression.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>Chang: Pharmacyclics, Inc: Employment, Equity Ownership. Chang:Pharmacyclics: Employment. Buggy:Pharmacyclics: Employment. Burger:Pharmacyclics: Consultancy, Honoraria, Research Funding.</jats:p> </jats:sec>
doi_str_mv 10.1182/blood.v124.21.1948.1948
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Chemie und Pharmazie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE4Mi9ibG9vZC52MTI0LjIxLjE5NDguMTk0OA
imprint American Society of Hematology, 2014
imprint_str_mv American Society of Hematology, 2014
institution DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14
issn 0006-4971, 1528-0020
issn_str_mv 0006-4971, 1528-0020
language English
last_indexed 2024-03-01T14:30:30.585Z
match_str chen2014invivoevidencethatibrutininbderegulateschemokinereceptorcxcr4surfacemembraneexpressionandsignalingalongwithinhibitingbcellantigenreceptorsignalingascausesfordefectivehomingandimpairedretentionofcllcellsintissues
mega_collection American Society of Hematology (CrossRef)
physical 1948-1948
publishDate 2014
publishDateSort 2014
publisher American Society of Hematology
record_format ai
recordtype ai
series Blood
source_id 49
spelling Chen, Shih-Shih Chang, Betty Y. Chang, Stella Tong, Timothy Zou, Yong-Rui Sherry, Barbara Buggy, Joseph J. Burger, Jan A. Rai, Kanti R. Chiorazzi, Nicholas 0006-4971 1528-0020 American Society of Hematology Cell Biology Hematology Immunology Biochemistry http://dx.doi.org/10.1182/blood.v124.21.1948.1948 <jats:title>Abstract</jats:title> <jats:p>The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has been approved by the FDA for the treatment of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. Patients receiving this treatment often develop lymphocytosis and concomitant reduced organomegaly. These actions of ibrutinib are believed due to egress of CLL cells from lymphoid compartments, although the mechanism(s) responsible for this are not clear.</jats:p> <jats:p>Overexpressed surface membrane chemokine receptor CXCR4 (smCXCR4) is a hallmark of CLL cells and is involved in CLL cell migration and interaction with protective niches. Surface expression of CXCR4 is regulated by phosphorylation at serine/theronine residues in the receptor’s cytoplasmic tail. Kinases including GRK and PIM are known to regulate phosphorylation and surface expression of CXCR4. The transcript and protein levels of BTK, GRK and PIM also correlate with smCXCR4 expression.</jats:p> <jats:p>Here we studied the effect of ibrutinib on CLL cell distribution using TCL1-192 cells, a clonal murine cell line that mimics aggressive CLL and involves active B-cell antigen receptor (BCR) signaling. Similar to patients, TCL1-192-bearing mice receiving ibrutinib developed almost immediately (≤ 1 hour) lymphocytosis that consisted of both non-divided and recently-divided cells. While TCL1-192 cells overexpress smCXCR4, ibrutinib promoted lymphocytosis was associated with a fall in smCXCR4 to a level similar to that on normal B cells from wild type C3H/B6 mice. Reduced levels of smCXCR4 were also observed at the later timepoints when mice still had the continued release of cells into circulation even though lymphocytosis was no longer evident. Despite this change in smCXCR4 expression, total CXCR4 was not changed after ibrutinib treatment.</jats:p> <jats:p>Importantly, cells obtained from ibrutinib treated animals that had reduced levels of smCXCR4 also failed to respond to their ligand CXCL12 in vitro, as measured by absence of smCXCR4 internalization or calcium mobilization. Furthermore, re-expression of smCXCR4 after withdrawal of CXCL12 was not observed in treated cells. We therefore next studied in vitro the mechanism whereby ibrutinib lowered smCXCR4 expression. Western blot analysis using cells treated with ibrutinib at the dose ≥0.1μM at 37⁰C for 2 hours in the presence of CXCL12 showed significantly reduced levels of phosphorylated CXCR4 at Ser339. Phosphorylation of Ser339 in the CXCR4 intracellular domain is known to be essential for normal receptor recycling, hyper-phosphorylated CXCR4 on Ser339 is associated with overexpressed smCXCR4 in CLL patient cells. Correlating with this, TCL1-192 cells treated with ibrutinib at 0.1μM not only de-phosphorylated CXCR4 on Ser339, but also significantly enhanced internalization of smCXCR4 after CXCL12 stimulation.</jats:p> <jats:p>We then examined the kinases responsible for the de-phosphorylation of CXCR4. Western blot analysis of CLL cells from animals treated with ibrutinib for 4 weeks showed minimal levels of total BTK protein. There was a direct positive correlation in between BTK protein expression and smCXCR4 expression. In addition to BTK, reduced levels of kinases known to regulate CXCR4 phosphorylation on Ser339 were also observed in cells collected from ibrutinib treated mice. Together, these results suggest blocking BTK, directly or indirectly causes de-phosphorylation of CXCR4, resulting in impaired smCXCR4 recycling and blocked CXCL12 signaling.</jats:p> <jats:p>The function of CXCR4 is dependent on its location on the cell membrane. Impaired CXCR4 recycling after ibrutinib treatment would lead to defective cell trafficking. Indeed, cell transfer studies involving TCL1-192 cells previously treated with ibrutinib indicated that persistent decrease in smCXCR4, which was ibrutinib-dependent, blocked the return of CLL cells to solid tissue niches. Finally, ibrutinib-fed mice eventually developed lower lymphocyte counts, reduced organomegaly, and prolonged survival. Ibrutinib-fed mice also had defective response to BCR stimulation, including abolished calcium mobilization, blocked cell proliferation and survival after anti-IgM antibody stimulation. Together, the data provide direct in vivo evidence of ibrutinib impairing CLL cell homing and retention and suggest a mechanism by which BTK targeted therapy affects not only BCR signaling but also CXCR4 phosphorylation and signaling, with the latter contributing to defective smCXCR4 expression.</jats:p> <jats:sec> <jats:title>Disclosures</jats:title> <jats:p>Chang: Pharmacyclics, Inc: Employment, Equity Ownership. Chang:Pharmacyclics: Employment. Buggy:Pharmacyclics: Employment. Burger:Pharmacyclics: Consultancy, Honoraria, Research Funding.</jats:p> </jats:sec> In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues Blood
spellingShingle Chen, Shih-Shih, Chang, Betty Y., Chang, Stella, Tong, Timothy, Zou, Yong-Rui, Sherry, Barbara, Buggy, Joseph J., Burger, Jan A., Rai, Kanti R., Chiorazzi, Nicholas, Blood, In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues, Cell Biology, Hematology, Immunology, Biochemistry
title In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_full In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_fullStr In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_full_unstemmed In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_short In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
title_sort in vivo evidence that ibrutininb deregulates chemokine receptor cxcr4 surface membrane expression and signaling, along with inhibiting b cell antigen receptor signaling, as causes for defective homing and impaired retention of cll cells in tissues
title_unstemmed In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues
topic Cell Biology, Hematology, Immunology, Biochemistry
url http://dx.doi.org/10.1182/blood.v124.21.1948.1948