Details
Zusammenfassung: <jats:title>Abstract</jats:title> <jats:p>Aerosols serve as a source of cloud condensation nuclei (CCN) and influence the microphysical properties of clouds. In the case of orographic clouds, it is suspected that aerosol–cloud interactions reduce the amount of precipitation on the upslope side of the mountain and enhance the precipitation on the downslope side when the number of aerosols is increased. The net effect may lead to a shift of the precipitation distribution toward the leeward side of mountain ranges, which affects the hydrological cycle on the local scale.</jats:p> <jats:p>In this study aerosol–cloud interactions in warm-phase clouds and the possible impact on the orographic precipitation distribution are investigated. Herein, simulations of moist orographic flow over topography are conducted and the influence of anthropogenic aerosols on the orographic precipitation formation is analyzed. The degree of aerosol pollution is prescribed by different aerosol spectra that are representative for central Switzerland. The simulations are performed with the Consortium for Small-Scale Modeling’s mesoscale nonhydrostatic limited-area weather prediction model (COSMO) with a horizontal grid spacing of 2 km and a fully coupled aerosol–cloud parameterization.</jats:p> <jats:p>It is found that an increase in the aerosol load leads to a downstream shift of the orographic precipitation distribution and to an increase in the spillover factor. A reduction of warm-phase orographic precipitation is observed at the upslope side of the mountain. The downslope precipitation enhancement depends critically on the width of the mountain and on the flow dynamics. In the case of orographic precipitation induced by stably stratified unblocked flow, the loss in upslope precipitation is not compensated by leeward precipitation enhancement. In contrast, flow blocking may lead to leeward precipitation enhancement and eventually to a compensation of the upslope precipitation loss. The simulations also indicate that latent heat effects induced by aerosol–cloud–precipitation interactions may considerably affect the orographic flow dynamics and consequently feed back on the orographic precipitation development.</jats:p>
Umfang: 2522-2542
ISSN: 1520-0469
0022-4928
DOI: 10.1175/2007jas2492.1