Eintrag weiter verarbeiten

Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation: Rescue...

Gespeichert in:

Bibliographische Detailangaben
Zeitschriftentitel: Circulation Research
Personen und Körperschaften: Spallotta, Francesco, Cencioni, Chiara, Atlante, Sandra, Garella, Davide, Cocco, Mattia, Mori, Mattia, Mastrocola, Raffaella, Kuenne, Carsten, Guenther, Stefan, Nanni, Simona, Azzimato, Valerio, Zukunft, Sven, Kornberger, Angela, Sürün, Duran, Schnütgen, Frank, von Melchner, Harald, Di Stilo, Antonella, Aragno, Manuela, Braspenning, Maarten, van Criekinge, Wim, De Blasio, Miles J., Ritchie, Rebecca H., Zaccagnini, Germana, Martelli, Fabio, Farsetti, Antonella, Fleming, Ingrid, Braun, Thomas, Beiras-Fernandez, Andres, Botta, Bruno, Collino, Massimo, Bertinaria, Massimo, Zeiher, Andreas M., Gaetano, Carlo
In: Circulation Research, 122, 2018, 1, S. 31-46
Format: E-Article
Sprache: Englisch
veröffentlicht:
Ovid Technologies (Wolters Kluwer Health)
Schlagwörter:
author_facet Spallotta, Francesco
Cencioni, Chiara
Atlante, Sandra
Garella, Davide
Cocco, Mattia
Mori, Mattia
Mastrocola, Raffaella
Kuenne, Carsten
Guenther, Stefan
Nanni, Simona
Azzimato, Valerio
Zukunft, Sven
Kornberger, Angela
Sürün, Duran
Schnütgen, Frank
von Melchner, Harald
Di Stilo, Antonella
Aragno, Manuela
Braspenning, Maarten
van Criekinge, Wim
De Blasio, Miles J.
Ritchie, Rebecca H.
Zaccagnini, Germana
Martelli, Fabio
Farsetti, Antonella
Fleming, Ingrid
Braun, Thomas
Beiras-Fernandez, Andres
Botta, Bruno
Collino, Massimo
Bertinaria, Massimo
Zeiher, Andreas M.
Gaetano, Carlo
Spallotta, Francesco
Cencioni, Chiara
Atlante, Sandra
Garella, Davide
Cocco, Mattia
Mori, Mattia
Mastrocola, Raffaella
Kuenne, Carsten
Guenther, Stefan
Nanni, Simona
Azzimato, Valerio
Zukunft, Sven
Kornberger, Angela
Sürün, Duran
Schnütgen, Frank
von Melchner, Harald
Di Stilo, Antonella
Aragno, Manuela
Braspenning, Maarten
van Criekinge, Wim
De Blasio, Miles J.
Ritchie, Rebecca H.
Zaccagnini, Germana
Martelli, Fabio
Farsetti, Antonella
Fleming, Ingrid
Braun, Thomas
Beiras-Fernandez, Andres
Botta, Bruno
Collino, Massimo
Bertinaria, Massimo
Zeiher, Andreas M.
Gaetano, Carlo
author Spallotta, Francesco
Cencioni, Chiara
Atlante, Sandra
Garella, Davide
Cocco, Mattia
Mori, Mattia
Mastrocola, Raffaella
Kuenne, Carsten
Guenther, Stefan
Nanni, Simona
Azzimato, Valerio
Zukunft, Sven
Kornberger, Angela
Sürün, Duran
Schnütgen, Frank
von Melchner, Harald
Di Stilo, Antonella
Aragno, Manuela
Braspenning, Maarten
van Criekinge, Wim
De Blasio, Miles J.
Ritchie, Rebecca H.
Zaccagnini, Germana
Martelli, Fabio
Farsetti, Antonella
Fleming, Ingrid
Braun, Thomas
Beiras-Fernandez, Andres
Botta, Bruno
Collino, Massimo
Bertinaria, Massimo
Zeiher, Andreas M.
Gaetano, Carlo
spellingShingle Spallotta, Francesco
Cencioni, Chiara
Atlante, Sandra
Garella, Davide
Cocco, Mattia
Mori, Mattia
Mastrocola, Raffaella
Kuenne, Carsten
Guenther, Stefan
Nanni, Simona
Azzimato, Valerio
Zukunft, Sven
Kornberger, Angela
Sürün, Duran
Schnütgen, Frank
von Melchner, Harald
Di Stilo, Antonella
Aragno, Manuela
Braspenning, Maarten
van Criekinge, Wim
De Blasio, Miles J.
Ritchie, Rebecca H.
Zaccagnini, Germana
Martelli, Fabio
Farsetti, Antonella
Fleming, Ingrid
Braun, Thomas
Beiras-Fernandez, Andres
Botta, Bruno
Collino, Massimo
Bertinaria, Massimo
Zeiher, Andreas M.
Gaetano, Carlo
Circulation Research
Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
Cardiology and Cardiovascular Medicine
Physiology
author_sort spallotta, francesco
spelling Spallotta, Francesco Cencioni, Chiara Atlante, Sandra Garella, Davide Cocco, Mattia Mori, Mattia Mastrocola, Raffaella Kuenne, Carsten Guenther, Stefan Nanni, Simona Azzimato, Valerio Zukunft, Sven Kornberger, Angela Sürün, Duran Schnütgen, Frank von Melchner, Harald Di Stilo, Antonella Aragno, Manuela Braspenning, Maarten van Criekinge, Wim De Blasio, Miles J. Ritchie, Rebecca H. Zaccagnini, Germana Martelli, Fabio Farsetti, Antonella Fleming, Ingrid Braun, Thomas Beiras-Fernandez, Andres Botta, Bruno Collino, Massimo Bertinaria, Massimo Zeiher, Andreas M. Gaetano, Carlo 0009-7330 1524-4571 Ovid Technologies (Wolters Kluwer Health) Cardiology and Cardiovascular Medicine Physiology http://dx.doi.org/10.1161/circresaha.117.311300 <jats:sec> <jats:title> <jats:underline>Rationale:</jats:underline> </jats:title> <jats:p>Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Objective:</jats:underline> </jats:title> <jats:p>To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Methods and Results:</jats:underline> </jats:title> <jats:p>Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Conclusions:</jats:underline> </jats:title> <jats:p>Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.</jats:p> </jats:sec> Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation Circulation Research
doi_str_mv 10.1161/circresaha.117.311300
facet_avail Online
Free
finc_class_facet Biologie
Medizin
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjcmVzYWhhLjExNy4zMTEzMDA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjcmVzYWhhLjExNy4zMTEzMDA
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Ovid Technologies (Wolters Kluwer Health), 2018
imprint_str_mv Ovid Technologies (Wolters Kluwer Health), 2018
issn 0009-7330
1524-4571
issn_str_mv 0009-7330
1524-4571
language English
mega_collection Ovid Technologies (Wolters Kluwer Health) (CrossRef)
match_str spallotta2018stableoxidativecytosinemodificationsaccumulateincardiacmesenchymalcellsfromtype2diabetespatientsrescuebyaketoglutarateandtettdgfunctionalreactivationrescuebyaketoglutarateandtettdgfunctionalreactivation
publishDateSort 2018
publisher Ovid Technologies (Wolters Kluwer Health)
recordtype ai
record_format ai
series Circulation Research
source_id 49
title_sub Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_unstemmed Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_full Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_fullStr Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_full_unstemmed Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_short Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_sort stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from type2 diabetes patients : rescue by α-ketoglutarate and tet-tdg functional reactivation
topic Cardiology and Cardiovascular Medicine
Physiology
url http://dx.doi.org/10.1161/circresaha.117.311300
publishDate 2018
physical 31-46
description <jats:sec> <jats:title> <jats:underline>Rationale:</jats:underline> </jats:title> <jats:p>Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Objective:</jats:underline> </jats:title> <jats:p>To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Methods and Results:</jats:underline> </jats:title> <jats:p>Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Conclusions:</jats:underline> </jats:title> <jats:p>Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.</jats:p> </jats:sec>
container_issue 1
container_start_page 31
container_title Circulation Research
container_volume 122
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346722702196739
geogr_code not assigned
last_indexed 2024-03-01T17:43:51.588Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Stable+Oxidative+Cytosine+Modifications+Accumulate+in+Cardiac+Mesenchymal+Cells+From+Type2+Diabetes+Patients+%3A+Rescue+by+%CE%B1-Ketoglutarate+and+TET-TDG+Functional+Reactivation&rft.date=2018-01-05&genre=article&issn=1524-4571&volume=122&issue=1&spage=31&epage=46&pages=31-46&jtitle=Circulation+Research&atitle=Stable+Oxidative+Cytosine+Modifications+Accumulate+in+Cardiac+Mesenchymal+Cells+From+Type2+Diabetes+Patients+%3A+Rescue+by+%CE%B1-Ketoglutarate+and+TET-TDG+Functional+Reactivation&aulast=Gaetano&aufirst=Carlo&rft_id=info%3Adoi%2F10.1161%2Fcircresaha.117.311300&rft.language%5B0%5D=eng
SOLR
_version_ 1792346722702196739
author Spallotta, Francesco, Cencioni, Chiara, Atlante, Sandra, Garella, Davide, Cocco, Mattia, Mori, Mattia, Mastrocola, Raffaella, Kuenne, Carsten, Guenther, Stefan, Nanni, Simona, Azzimato, Valerio, Zukunft, Sven, Kornberger, Angela, Sürün, Duran, Schnütgen, Frank, von Melchner, Harald, Di Stilo, Antonella, Aragno, Manuela, Braspenning, Maarten, van Criekinge, Wim, De Blasio, Miles J., Ritchie, Rebecca H., Zaccagnini, Germana, Martelli, Fabio, Farsetti, Antonella, Fleming, Ingrid, Braun, Thomas, Beiras-Fernandez, Andres, Botta, Bruno, Collino, Massimo, Bertinaria, Massimo, Zeiher, Andreas M., Gaetano, Carlo
author_facet Spallotta, Francesco, Cencioni, Chiara, Atlante, Sandra, Garella, Davide, Cocco, Mattia, Mori, Mattia, Mastrocola, Raffaella, Kuenne, Carsten, Guenther, Stefan, Nanni, Simona, Azzimato, Valerio, Zukunft, Sven, Kornberger, Angela, Sürün, Duran, Schnütgen, Frank, von Melchner, Harald, Di Stilo, Antonella, Aragno, Manuela, Braspenning, Maarten, van Criekinge, Wim, De Blasio, Miles J., Ritchie, Rebecca H., Zaccagnini, Germana, Martelli, Fabio, Farsetti, Antonella, Fleming, Ingrid, Braun, Thomas, Beiras-Fernandez, Andres, Botta, Bruno, Collino, Massimo, Bertinaria, Massimo, Zeiher, Andreas M., Gaetano, Carlo, Spallotta, Francesco, Cencioni, Chiara, Atlante, Sandra, Garella, Davide, Cocco, Mattia, Mori, Mattia, Mastrocola, Raffaella, Kuenne, Carsten, Guenther, Stefan, Nanni, Simona, Azzimato, Valerio, Zukunft, Sven, Kornberger, Angela, Sürün, Duran, Schnütgen, Frank, von Melchner, Harald, Di Stilo, Antonella, Aragno, Manuela, Braspenning, Maarten, van Criekinge, Wim, De Blasio, Miles J., Ritchie, Rebecca H., Zaccagnini, Germana, Martelli, Fabio, Farsetti, Antonella, Fleming, Ingrid, Braun, Thomas, Beiras-Fernandez, Andres, Botta, Bruno, Collino, Massimo, Bertinaria, Massimo, Zeiher, Andreas M., Gaetano, Carlo
author_sort spallotta, francesco
container_issue 1
container_start_page 31
container_title Circulation Research
container_volume 122
description <jats:sec> <jats:title> <jats:underline>Rationale:</jats:underline> </jats:title> <jats:p>Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Objective:</jats:underline> </jats:title> <jats:p>To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Methods and Results:</jats:underline> </jats:title> <jats:p>Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Conclusions:</jats:underline> </jats:title> <jats:p>Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.</jats:p> </jats:sec>
doi_str_mv 10.1161/circresaha.117.311300
facet_avail Online, Free
finc_class_facet Biologie, Medizin
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE2MS9jaXJjcmVzYWhhLjExNy4zMTEzMDA
imprint Ovid Technologies (Wolters Kluwer Health), 2018
imprint_str_mv Ovid Technologies (Wolters Kluwer Health), 2018
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0009-7330, 1524-4571
issn_str_mv 0009-7330, 1524-4571
language English
last_indexed 2024-03-01T17:43:51.588Z
match_str spallotta2018stableoxidativecytosinemodificationsaccumulateincardiacmesenchymalcellsfromtype2diabetespatientsrescuebyaketoglutarateandtettdgfunctionalreactivationrescuebyaketoglutarateandtettdgfunctionalreactivation
mega_collection Ovid Technologies (Wolters Kluwer Health) (CrossRef)
physical 31-46
publishDate 2018
publishDateSort 2018
publisher Ovid Technologies (Wolters Kluwer Health)
record_format ai
recordtype ai
series Circulation Research
source_id 49
spelling Spallotta, Francesco Cencioni, Chiara Atlante, Sandra Garella, Davide Cocco, Mattia Mori, Mattia Mastrocola, Raffaella Kuenne, Carsten Guenther, Stefan Nanni, Simona Azzimato, Valerio Zukunft, Sven Kornberger, Angela Sürün, Duran Schnütgen, Frank von Melchner, Harald Di Stilo, Antonella Aragno, Manuela Braspenning, Maarten van Criekinge, Wim De Blasio, Miles J. Ritchie, Rebecca H. Zaccagnini, Germana Martelli, Fabio Farsetti, Antonella Fleming, Ingrid Braun, Thomas Beiras-Fernandez, Andres Botta, Bruno Collino, Massimo Bertinaria, Massimo Zeiher, Andreas M. Gaetano, Carlo 0009-7330 1524-4571 Ovid Technologies (Wolters Kluwer Health) Cardiology and Cardiovascular Medicine Physiology http://dx.doi.org/10.1161/circresaha.117.311300 <jats:sec> <jats:title> <jats:underline>Rationale:</jats:underline> </jats:title> <jats:p>Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Objective:</jats:underline> </jats:title> <jats:p>To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Methods and Results:</jats:underline> </jats:title> <jats:p>Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.</jats:p> </jats:sec> <jats:sec> <jats:title> <jats:underline>Conclusions:</jats:underline> </jats:title> <jats:p>Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.</jats:p> </jats:sec> Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation Circulation Research
spellingShingle Spallotta, Francesco, Cencioni, Chiara, Atlante, Sandra, Garella, Davide, Cocco, Mattia, Mori, Mattia, Mastrocola, Raffaella, Kuenne, Carsten, Guenther, Stefan, Nanni, Simona, Azzimato, Valerio, Zukunft, Sven, Kornberger, Angela, Sürün, Duran, Schnütgen, Frank, von Melchner, Harald, Di Stilo, Antonella, Aragno, Manuela, Braspenning, Maarten, van Criekinge, Wim, De Blasio, Miles J., Ritchie, Rebecca H., Zaccagnini, Germana, Martelli, Fabio, Farsetti, Antonella, Fleming, Ingrid, Braun, Thomas, Beiras-Fernandez, Andres, Botta, Bruno, Collino, Massimo, Bertinaria, Massimo, Zeiher, Andreas M., Gaetano, Carlo, Circulation Research, Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation, Cardiology and Cardiovascular Medicine, Physiology
title Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_full Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_fullStr Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_full_unstemmed Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_short Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_sort stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from type2 diabetes patients : rescue by α-ketoglutarate and tet-tdg functional reactivation
title_sub Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
title_unstemmed Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients : Rescue by α-Ketoglutarate and TET-TDG Functional Reactivation
topic Cardiology and Cardiovascular Medicine, Physiology
url http://dx.doi.org/10.1161/circresaha.117.311300