author_facet Wu, J.S.
Chen, J.H.
Wu, J.S.
Chen, J.H.
author Wu, J.S.
Chen, J.H.
spellingShingle Wu, J.S.
Chen, J.H.
Shock and Vibration
An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
Mechanical Engineering
Mechanics of Materials
Geotechnical Engineering and Engineering Geology
Condensed Matter Physics
Civil and Structural Engineering
author_sort wu, j.s.
spelling Wu, J.S. Chen, J.H. 1070-9622 1875-9203 Hindawi Limited Mechanical Engineering Mechanics of Materials Geotechnical Engineering and Engineering Geology Condensed Matter Physics Civil and Structural Engineering http://dx.doi.org/10.1155/2012/457104 <jats:p>The frequency-response curve is an important information for the structural design, but the conventional time-history method for obtaining the frequency-response curve of a multi-degree-of-freedom (MDOF) system is time-consuming. Thus, this paper presents an efficient technique to determine the forced vibration response amplitudes of a multi-span beam carrying arbitrary concentrated elements. To this end, the "steady" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>of the above-mentioned MDOF system due to harmonic excitations (with the specified frequencies<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>) are determined by using the numerical assembly method (NAM). Next, the corresponding "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same vibrating system are calculated by using a relationship between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>obtained from the single-degree-of-freedom (SDOF) vibrating system. It is noted that, near resonance (i.e.,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>≈</mml:mo></mml:math>1.0), the entire MDOF system (with natural frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w</mml:mi></mml:math>) will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM) incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.</jats:p> An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments Shock and Vibration
doi_str_mv 10.1155/2012/457104
facet_avail Online
Free
finc_class_facet Geologie und Paläontologie
Geographie
Physik
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1NS8yMDEyLzQ1NzEwNA
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1NS8yMDEyLzQ1NzEwNA
institution DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
imprint Hindawi Limited, 2012
imprint_str_mv Hindawi Limited, 2012
issn 1070-9622
1875-9203
issn_str_mv 1070-9622
1875-9203
language English
mega_collection Hindawi Limited (CrossRef)
match_str wu2012anefficientapproachfordeterminingforcedvibrationresponseamplitudesofamdofsystemwithvariousattachments
publishDateSort 2012
publisher Hindawi Limited
recordtype ai
record_format ai
series Shock and Vibration
source_id 49
title An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_unstemmed An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_full An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_fullStr An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_full_unstemmed An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_short An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_sort an efficient approach for determining forced vibration response amplitudes of a mdof system with various attachments
topic Mechanical Engineering
Mechanics of Materials
Geotechnical Engineering and Engineering Geology
Condensed Matter Physics
Civil and Structural Engineering
url http://dx.doi.org/10.1155/2012/457104
publishDate 2012
physical 57-79
description <jats:p>The frequency-response curve is an important information for the structural design, but the conventional time-history method for obtaining the frequency-response curve of a multi-degree-of-freedom (MDOF) system is time-consuming. Thus, this paper presents an efficient technique to determine the forced vibration response amplitudes of a multi-span beam carrying arbitrary concentrated elements. To this end, the "steady" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>of the above-mentioned MDOF system due to harmonic excitations (with the specified frequencies<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>) are determined by using the numerical assembly method (NAM). Next, the corresponding "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same vibrating system are calculated by using a relationship between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>obtained from the single-degree-of-freedom (SDOF) vibrating system. It is noted that, near resonance (i.e.,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>≈</mml:mo></mml:math>1.0), the entire MDOF system (with natural frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w</mml:mi></mml:math>) will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM) incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.</jats:p>
container_issue 1
container_start_page 57
container_title Shock and Vibration
container_volume 19
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792332461968982022
geogr_code not assigned
last_indexed 2024-03-01T13:56:42.39Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=An+Efficient+Approach+for+Determining+Forced+Vibration+Response+Amplitudes+of+a+MDOF+System+with+Various+Attachments&rft.date=2012-01-01&genre=article&issn=1875-9203&volume=19&issue=1&spage=57&epage=79&pages=57-79&jtitle=Shock+and+Vibration&atitle=An+Efficient+Approach+for+Determining+Forced+Vibration+Response+Amplitudes+of+a+MDOF+System+with+Various+Attachments&aulast=Chen&aufirst=J.H.&rft_id=info%3Adoi%2F10.1155%2F2012%2F457104&rft.language%5B0%5D=eng
SOLR
_version_ 1792332461968982022
author Wu, J.S., Chen, J.H.
author_facet Wu, J.S., Chen, J.H., Wu, J.S., Chen, J.H.
author_sort wu, j.s.
container_issue 1
container_start_page 57
container_title Shock and Vibration
container_volume 19
description <jats:p>The frequency-response curve is an important information for the structural design, but the conventional time-history method for obtaining the frequency-response curve of a multi-degree-of-freedom (MDOF) system is time-consuming. Thus, this paper presents an efficient technique to determine the forced vibration response amplitudes of a multi-span beam carrying arbitrary concentrated elements. To this end, the "steady" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>of the above-mentioned MDOF system due to harmonic excitations (with the specified frequencies<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>) are determined by using the numerical assembly method (NAM). Next, the corresponding "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same vibrating system are calculated by using a relationship between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>obtained from the single-degree-of-freedom (SDOF) vibrating system. It is noted that, near resonance (i.e.,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>≈</mml:mo></mml:math>1.0), the entire MDOF system (with natural frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w</mml:mi></mml:math>) will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM) incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.</jats:p>
doi_str_mv 10.1155/2012/457104
facet_avail Online, Free
finc_class_facet Geologie und Paläontologie, Geographie, Physik, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTE1NS8yMDEyLzQ1NzEwNA
imprint Hindawi Limited, 2012
imprint_str_mv Hindawi Limited, 2012
institution DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1
issn 1070-9622, 1875-9203
issn_str_mv 1070-9622, 1875-9203
language English
last_indexed 2024-03-01T13:56:42.39Z
match_str wu2012anefficientapproachfordeterminingforcedvibrationresponseamplitudesofamdofsystemwithvariousattachments
mega_collection Hindawi Limited (CrossRef)
physical 57-79
publishDate 2012
publishDateSort 2012
publisher Hindawi Limited
record_format ai
recordtype ai
series Shock and Vibration
source_id 49
spelling Wu, J.S. Chen, J.H. 1070-9622 1875-9203 Hindawi Limited Mechanical Engineering Mechanics of Materials Geotechnical Engineering and Engineering Geology Condensed Matter Physics Civil and Structural Engineering http://dx.doi.org/10.1155/2012/457104 <jats:p>The frequency-response curve is an important information for the structural design, but the conventional time-history method for obtaining the frequency-response curve of a multi-degree-of-freedom (MDOF) system is time-consuming. Thus, this paper presents an efficient technique to determine the forced vibration response amplitudes of a multi-span beam carrying arbitrary concentrated elements. To this end, the "steady" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>of the above-mentioned MDOF system due to harmonic excitations (with the specified frequencies<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>) are determined by using the numerical assembly method (NAM). Next, the corresponding "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same vibrating system are calculated by using a relationship between<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>s</mml:mi></mml:msub></mml:mrow></mml:math>obtained from the single-degree-of-freedom (SDOF) vibrating system. It is noted that, near resonance (i.e.,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>≈</mml:mo></mml:math>1.0), the entire MDOF system (with natural frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w</mml:mi></mml:math>) will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM) incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mrow><mml:mi>Y</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:math>of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>w</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:mrow></mml:math>. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.</jats:p> An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments Shock and Vibration
spellingShingle Wu, J.S., Chen, J.H., Shock and Vibration, An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments, Mechanical Engineering, Mechanics of Materials, Geotechnical Engineering and Engineering Geology, Condensed Matter Physics, Civil and Structural Engineering
title An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_full An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_fullStr An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_full_unstemmed An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_short An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
title_sort an efficient approach for determining forced vibration response amplitudes of a mdof system with various attachments
title_unstemmed An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments
topic Mechanical Engineering, Mechanics of Materials, Geotechnical Engineering and Engineering Geology, Condensed Matter Physics, Civil and Structural Engineering
url http://dx.doi.org/10.1155/2012/457104