Details
Zusammenfassung: <jats:title>Abstract</jats:title><jats:p>Granulocyte colony stimulating factor receptor (G-CSFR) plays an important role in the production of neutrophil granulocytes. Mutated G-CSFRs have been directly associated with two distinct malignant phenotypes in patients, e.g. acute myeloid leukemia (AML) and chronic neutrophilic leukemia (CNL). However, the signaling mechanism of the mutated G-CSFRs is not well understood. Here, we present a comprehensive SILAC-based quantitative phosphoserine and phosphothreonine dataset of the normal and mutated G-CSFRs signaling using the BaF3 cell-line-based <jats:italic>in vitro</jats:italic> model system. High pH reversed phase concatenation and Titanium Dioxide Spin Tip column were utilized to increase the dynamic range and detection of the phosphoproteome of G-CSFRs. The dataset was further analyzed using several computational tools to validate the quality of the dataset. Overall, this dataset is the first global phosphoproteomics analysis of both normal and disease-associated-mutant G-CSFRs. We anticipate that this dataset will have a strong potential to decipher the phospho-signaling differences between the normal and malignant G-CSFR biology with therapeutic implications. The phosphoproteomic dataset is available via the PRIDE partner repository.</jats:p>
ISSN: 2052-4463
DOI: 10.1038/s41597-019-0015-8