author_facet Tosic, Milica
Allen, Anita
Willmann, Dominica
Lepper, Christoph
Kim, Johnny
Duteil, Delphine
Schüle, Roland
Tosic, Milica
Allen, Anita
Willmann, Dominica
Lepper, Christoph
Kim, Johnny
Duteil, Delphine
Schüle, Roland
author Tosic, Milica
Allen, Anita
Willmann, Dominica
Lepper, Christoph
Kim, Johnny
Duteil, Delphine
Schüle, Roland
spellingShingle Tosic, Milica
Allen, Anita
Willmann, Dominica
Lepper, Christoph
Kim, Johnny
Duteil, Delphine
Schüle, Roland
Nature Communications
Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
General Physics and Astronomy
General Biochemistry, Genetics and Molecular Biology
General Chemistry
Multidisciplinary
author_sort tosic, milica
spelling Tosic, Milica Allen, Anita Willmann, Dominica Lepper, Christoph Kim, Johnny Duteil, Delphine Schüle, Roland 2041-1723 Springer Science and Business Media LLC General Physics and Astronomy General Biochemistry, Genetics and Molecular Biology General Chemistry Multidisciplinary http://dx.doi.org/10.1038/s41467-017-02740-5 <jats:title>Abstract</jats:title><jats:p>Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.</jats:p> Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells Nature Communications
doi_str_mv 10.1038/s41467-017-02740-5
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE0NjctMDE3LTAyNzQwLTU
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE0NjctMDE3LTAyNzQwLTU
institution DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
imprint Springer Science and Business Media LLC, 2018
imprint_str_mv Springer Science and Business Media LLC, 2018
issn 2041-1723
issn_str_mv 2041-1723
language English
mega_collection Springer Science and Business Media LLC (CrossRef)
match_str tosic2018lsd1regulatesskeletalmuscleregenerationanddirectsthefateofsatellitecells
publishDateSort 2018
publisher Springer Science and Business Media LLC
recordtype ai
record_format ai
series Nature Communications
source_id 49
title Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_unstemmed Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_full Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_fullStr Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_full_unstemmed Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_short Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_sort lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
topic General Physics and Astronomy
General Biochemistry, Genetics and Molecular Biology
General Chemistry
Multidisciplinary
url http://dx.doi.org/10.1038/s41467-017-02740-5
publishDate 2018
physical
description <jats:title>Abstract</jats:title><jats:p>Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.</jats:p>
container_issue 1
container_start_page 0
container_title Nature Communications
container_volume 9
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792347434366533639
geogr_code not assigned
last_indexed 2024-03-01T17:55:12.619Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Lsd1+regulates+skeletal+muscle+regeneration+and+directs+the+fate+of+satellite+cells&rft.date=2018-01-25&genre=article&issn=2041-1723&volume=9&issue=1&jtitle=Nature+Communications&atitle=Lsd1+regulates+skeletal+muscle+regeneration+and+directs+the+fate+of+satellite+cells&aulast=Sch%C3%BCle&aufirst=Roland&rft_id=info%3Adoi%2F10.1038%2Fs41467-017-02740-5&rft.language%5B0%5D=eng
SOLR
_version_ 1792347434366533639
author Tosic, Milica, Allen, Anita, Willmann, Dominica, Lepper, Christoph, Kim, Johnny, Duteil, Delphine, Schüle, Roland
author_facet Tosic, Milica, Allen, Anita, Willmann, Dominica, Lepper, Christoph, Kim, Johnny, Duteil, Delphine, Schüle, Roland, Tosic, Milica, Allen, Anita, Willmann, Dominica, Lepper, Christoph, Kim, Johnny, Duteil, Delphine, Schüle, Roland
author_sort tosic, milica
container_issue 1
container_start_page 0
container_title Nature Communications
container_volume 9
description <jats:title>Abstract</jats:title><jats:p>Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.</jats:p>
doi_str_mv 10.1038/s41467-017-02740-5
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAzOC9zNDE0NjctMDE3LTAyNzQwLTU
imprint Springer Science and Business Media LLC, 2018
imprint_str_mv Springer Science and Business Media LLC, 2018
institution DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14
issn 2041-1723
issn_str_mv 2041-1723
language English
last_indexed 2024-03-01T17:55:12.619Z
match_str tosic2018lsd1regulatesskeletalmuscleregenerationanddirectsthefateofsatellitecells
mega_collection Springer Science and Business Media LLC (CrossRef)
physical
publishDate 2018
publishDateSort 2018
publisher Springer Science and Business Media LLC
record_format ai
recordtype ai
series Nature Communications
source_id 49
spelling Tosic, Milica Allen, Anita Willmann, Dominica Lepper, Christoph Kim, Johnny Duteil, Delphine Schüle, Roland 2041-1723 Springer Science and Business Media LLC General Physics and Astronomy General Biochemistry, Genetics and Molecular Biology General Chemistry Multidisciplinary http://dx.doi.org/10.1038/s41467-017-02740-5 <jats:title>Abstract</jats:title><jats:p>Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.</jats:p> Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells Nature Communications
spellingShingle Tosic, Milica, Allen, Anita, Willmann, Dominica, Lepper, Christoph, Kim, Johnny, Duteil, Delphine, Schüle, Roland, Nature Communications, Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells, General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary
title Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_full Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_fullStr Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_full_unstemmed Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_short Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_sort lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
title_unstemmed Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells
topic General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary
url http://dx.doi.org/10.1038/s41467-017-02740-5