author_facet Boudouridis, A.
Rodriguez, J.V.
Kress, B.T.
Dichter, B.K.
Onsager, T.G.
Boudouridis, A.
Rodriguez, J.V.
Kress, B.T.
Dichter, B.K.
Onsager, T.G.
author Boudouridis, A.
Rodriguez, J.V.
Kress, B.T.
Dichter, B.K.
Onsager, T.G.
spellingShingle Boudouridis, A.
Rodriguez, J.V.
Kress, B.T.
Dichter, B.K.
Onsager, T.G.
Space Weather
Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
Atmospheric Science
author_sort boudouridis, a.
spelling Boudouridis, A. Rodriguez, J.V. Kress, B.T. Dichter, B.K. Onsager, T.G. 1542-7390 1542-7390 American Geophysical Union (AGU) Atmospheric Science http://dx.doi.org/10.1029/2019sw002403 <jats:title>Abstract</jats:title><jats:p>The Space Environment In‐Situ Suite on the Geostationary Operational Environmental Satellite (GOES)‐R series of satellites includes a new instrument for measuring radiation belt electrons and protons, the Magnetospheric Particle Sensor–High Energy (MPS‐HI). The MPS‐HI electron channels cover the energy range 50 keV to 4 MeV. The conversion of raw MPS‐HI electron telescope counts to fluxes is based on the so‐called bowtie technique. The goal of the bowtie analysis is to calculate for each energy channel an energy/geometric factor pair applicable to a wide range of energy spectra and for which the geometric factor error is minimized. Rather than using idealized analytical spectral functions, we use observed high‐resolution spectra from the cross‐calibrated Combined Release and Radiation Effects Satellite (CRRES) Medium Electron Sensor A and High Energy Electron Fluxmeter data set from the period 1990–1991, restricted to 6 &lt; <jats:italic>L</jats:italic> &lt; 8. One thousand randomly selected CRRES spectra are used to perform the bowtie analysis and determine the MPS‐HI channel energy/geometric factor characteristics. The results are used to convert the GOES‐16/‐17 MPS‐HI electron counts to fluxes. The same bowtie technique is used to calculate effective energies and geometric factors for the GOES‐13/‐14 Magnetospheric Electron Detector ME1‐ME5 (30–600 keV) electron channels. We compare the fluxes from the various spacecraft (GOES‐16/‐13, GOES‐17/‐14, and GOES‐16/‐17) over periods of several months to determine the applicability and utility of the bowtie analysis. Finally, we compare the GOES‐16/‐13 fluxes during 22 days of near conjunction. All comparisons show good agreement among the various satellite data sets.</jats:p> Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels Space Weather
doi_str_mv 10.1029/2019sw002403
facet_avail Online
Free
finc_class_facet Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAyOS8yMDE5c3cwMDI0MDM
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAyOS8yMDE5c3cwMDI0MDM
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint American Geophysical Union (AGU), 2020
imprint_str_mv American Geophysical Union (AGU), 2020
issn 1542-7390
issn_str_mv 1542-7390
language English
mega_collection American Geophysical Union (AGU) (CrossRef)
match_str boudouridis2020developmentofabowtieinversiontechniqueforrealtimeprocessingofthegoes1617seissmpshielectronchannels
publishDateSort 2020
publisher American Geophysical Union (AGU)
recordtype ai
record_format ai
series Space Weather
source_id 49
title Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_unstemmed Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_full Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_fullStr Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_full_unstemmed Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_short Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_sort development of a bowtie inversion technique for real‐time processing of the goes‐16/‐17 seiss mps‐hi electron channels
topic Atmospheric Science
url http://dx.doi.org/10.1029/2019sw002403
publishDate 2020
physical
description <jats:title>Abstract</jats:title><jats:p>The Space Environment In‐Situ Suite on the Geostationary Operational Environmental Satellite (GOES)‐R series of satellites includes a new instrument for measuring radiation belt electrons and protons, the Magnetospheric Particle Sensor–High Energy (MPS‐HI). The MPS‐HI electron channels cover the energy range 50 keV to 4 MeV. The conversion of raw MPS‐HI electron telescope counts to fluxes is based on the so‐called bowtie technique. The goal of the bowtie analysis is to calculate for each energy channel an energy/geometric factor pair applicable to a wide range of energy spectra and for which the geometric factor error is minimized. Rather than using idealized analytical spectral functions, we use observed high‐resolution spectra from the cross‐calibrated Combined Release and Radiation Effects Satellite (CRRES) Medium Electron Sensor A and High Energy Electron Fluxmeter data set from the period 1990–1991, restricted to 6 &lt; <jats:italic>L</jats:italic> &lt; 8. One thousand randomly selected CRRES spectra are used to perform the bowtie analysis and determine the MPS‐HI channel energy/geometric factor characteristics. The results are used to convert the GOES‐16/‐17 MPS‐HI electron counts to fluxes. The same bowtie technique is used to calculate effective energies and geometric factors for the GOES‐13/‐14 Magnetospheric Electron Detector ME1‐ME5 (30–600 keV) electron channels. We compare the fluxes from the various spacecraft (GOES‐16/‐13, GOES‐17/‐14, and GOES‐16/‐17) over periods of several months to determine the applicability and utility of the bowtie analysis. Finally, we compare the GOES‐16/‐13 fluxes during 22 days of near conjunction. All comparisons show good agreement among the various satellite data sets.</jats:p>
container_issue 4
container_start_page 0
container_title Space Weather
container_volume 18
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792345808386916352
geogr_code not assigned
last_indexed 2024-03-01T17:29:21.339Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Development+of+a+Bowtie+Inversion+Technique+for+Real%E2%80%90Time+Processing+of+the+GOES%E2%80%9016%2F%E2%80%9017+SEISS+MPS%E2%80%90HI+Electron+Channels&rft.date=2020-04-01&genre=article&issn=1542-7390&volume=18&issue=4&jtitle=Space+Weather&atitle=Development+of+a+Bowtie+Inversion+Technique+for+Real%E2%80%90Time+Processing+of+the+GOES%E2%80%9016%2F%E2%80%9017+SEISS+MPS%E2%80%90HI+Electron+Channels&aulast=Onsager&aufirst=T.G.&rft_id=info%3Adoi%2F10.1029%2F2019sw002403&rft.language%5B0%5D=eng
SOLR
_version_ 1792345808386916352
author Boudouridis, A., Rodriguez, J.V., Kress, B.T., Dichter, B.K., Onsager, T.G.
author_facet Boudouridis, A., Rodriguez, J.V., Kress, B.T., Dichter, B.K., Onsager, T.G., Boudouridis, A., Rodriguez, J.V., Kress, B.T., Dichter, B.K., Onsager, T.G.
author_sort boudouridis, a.
container_issue 4
container_start_page 0
container_title Space Weather
container_volume 18
description <jats:title>Abstract</jats:title><jats:p>The Space Environment In‐Situ Suite on the Geostationary Operational Environmental Satellite (GOES)‐R series of satellites includes a new instrument for measuring radiation belt electrons and protons, the Magnetospheric Particle Sensor–High Energy (MPS‐HI). The MPS‐HI electron channels cover the energy range 50 keV to 4 MeV. The conversion of raw MPS‐HI electron telescope counts to fluxes is based on the so‐called bowtie technique. The goal of the bowtie analysis is to calculate for each energy channel an energy/geometric factor pair applicable to a wide range of energy spectra and for which the geometric factor error is minimized. Rather than using idealized analytical spectral functions, we use observed high‐resolution spectra from the cross‐calibrated Combined Release and Radiation Effects Satellite (CRRES) Medium Electron Sensor A and High Energy Electron Fluxmeter data set from the period 1990–1991, restricted to 6 &lt; <jats:italic>L</jats:italic> &lt; 8. One thousand randomly selected CRRES spectra are used to perform the bowtie analysis and determine the MPS‐HI channel energy/geometric factor characteristics. The results are used to convert the GOES‐16/‐17 MPS‐HI electron counts to fluxes. The same bowtie technique is used to calculate effective energies and geometric factors for the GOES‐13/‐14 Magnetospheric Electron Detector ME1‐ME5 (30–600 keV) electron channels. We compare the fluxes from the various spacecraft (GOES‐16/‐13, GOES‐17/‐14, and GOES‐16/‐17) over periods of several months to determine the applicability and utility of the bowtie analysis. Finally, we compare the GOES‐16/‐13 fluxes during 22 days of near conjunction. All comparisons show good agreement among the various satellite data sets.</jats:p>
doi_str_mv 10.1029/2019sw002403
facet_avail Online, Free
finc_class_facet Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAyOS8yMDE5c3cwMDI0MDM
imprint American Geophysical Union (AGU), 2020
imprint_str_mv American Geophysical Union (AGU), 2020
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 1542-7390
issn_str_mv 1542-7390
language English
last_indexed 2024-03-01T17:29:21.339Z
match_str boudouridis2020developmentofabowtieinversiontechniqueforrealtimeprocessingofthegoes1617seissmpshielectronchannels
mega_collection American Geophysical Union (AGU) (CrossRef)
physical
publishDate 2020
publishDateSort 2020
publisher American Geophysical Union (AGU)
record_format ai
recordtype ai
series Space Weather
source_id 49
spelling Boudouridis, A. Rodriguez, J.V. Kress, B.T. Dichter, B.K. Onsager, T.G. 1542-7390 1542-7390 American Geophysical Union (AGU) Atmospheric Science http://dx.doi.org/10.1029/2019sw002403 <jats:title>Abstract</jats:title><jats:p>The Space Environment In‐Situ Suite on the Geostationary Operational Environmental Satellite (GOES)‐R series of satellites includes a new instrument for measuring radiation belt electrons and protons, the Magnetospheric Particle Sensor–High Energy (MPS‐HI). The MPS‐HI electron channels cover the energy range 50 keV to 4 MeV. The conversion of raw MPS‐HI electron telescope counts to fluxes is based on the so‐called bowtie technique. The goal of the bowtie analysis is to calculate for each energy channel an energy/geometric factor pair applicable to a wide range of energy spectra and for which the geometric factor error is minimized. Rather than using idealized analytical spectral functions, we use observed high‐resolution spectra from the cross‐calibrated Combined Release and Radiation Effects Satellite (CRRES) Medium Electron Sensor A and High Energy Electron Fluxmeter data set from the period 1990–1991, restricted to 6 &lt; <jats:italic>L</jats:italic> &lt; 8. One thousand randomly selected CRRES spectra are used to perform the bowtie analysis and determine the MPS‐HI channel energy/geometric factor characteristics. The results are used to convert the GOES‐16/‐17 MPS‐HI electron counts to fluxes. The same bowtie technique is used to calculate effective energies and geometric factors for the GOES‐13/‐14 Magnetospheric Electron Detector ME1‐ME5 (30–600 keV) electron channels. We compare the fluxes from the various spacecraft (GOES‐16/‐13, GOES‐17/‐14, and GOES‐16/‐17) over periods of several months to determine the applicability and utility of the bowtie analysis. Finally, we compare the GOES‐16/‐13 fluxes during 22 days of near conjunction. All comparisons show good agreement among the various satellite data sets.</jats:p> Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels Space Weather
spellingShingle Boudouridis, A., Rodriguez, J.V., Kress, B.T., Dichter, B.K., Onsager, T.G., Space Weather, Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels, Atmospheric Science
title Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_full Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_fullStr Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_full_unstemmed Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_short Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
title_sort development of a bowtie inversion technique for real‐time processing of the goes‐16/‐17 seiss mps‐hi electron channels
title_unstemmed Development of a Bowtie Inversion Technique for Real‐Time Processing of the GOES‐16/‐17 SEISS MPS‐HI Electron Channels
topic Atmospheric Science
url http://dx.doi.org/10.1029/2019sw002403