Details
Zusammenfassung: <jats:p>We investigated environmental forcing mechanisms of phytoplankton absorption near the Mississippi River delta using multiyear satellite data. An algorithm for the phytoplankton absorption coefficient (<jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub>) was developed from in situ measurements and applied to ocean color imagery. We employed a suite of chemical and physical forcing variables, including surface currents. For satellite‐derived <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> time series (2002–2004), correlation and stepwise regression analyses revealed the most important forcing variables of <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> on the Louisiana shelf. Areally, Mississippi River discharge and nitrate concentration ([NO<jats:sub>3</jats:sub>]) were the two most important predictors of <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> over the hypoxic zone (defined by its maximum extent). River discharge was important in a band stretching from the Mississippi River delta to the Louisiana‐Texas border. Riverine [NO<jats:sub>3</jats:sub>] and wind magnitude best predicted <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> in nearshore waters, and solar radiation and SST were most important farther offshore over the hypoxic zone, indicating upwelled nutrient sources to phytoplankton. A multiple linear regression model performed well in resolving seasonal and interannual <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> variability in model development years (2002–2004) (mean error of 18%, over all pixels and months) and in predicting shelf‐wide <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> patterns in 2005 (mean error of 32%). Our results strongly suggest that in recent years, stratification and vertical mixing, in addition to riverine [NO<jats:sub>3</jats:sub>], play a primary role in regulating phytoplankton biomass over the hypoxic zone. As well, a springtime model experiment showed that <jats:italic>a</jats:italic><jats:sub><jats:italic>ph</jats:italic></jats:sub> over the hypoxic zone can differ by an average absolute 37% from its average scenario owing to changes solely in environmental variables other than NO<jats:sub>3</jats:sub> flux.</jats:p>
ISSN: 0148-0227
DOI: 10.1029/2007jc004594