Eintrag weiter verarbeiten
author_facet Cristoforetti, G.
Antonelli, L.
Mancelli, D.
Atzeni, S.
Baffigi, F.
Barbato, F.
Batani, D.
Boutoux, G.
D’Amato, F.
Dostal, J.
Dudzak, R.
Filippov, E.
Gu, Y. J.
Juha, L.
Klimo, O.
Krus, M.
Malko, S.
Martynenko, A. S.
Nicolai, Ph.
Ospina, V.
Pikuz, S.
Renner, O.
Santos, J.
Tikhonchuk, V. T.
Trela, J.
Viciani, S.
Volpe, L.
Weber, S.
Gizzi, L. A.
Cristoforetti, G.
Antonelli, L.
Mancelli, D.
Atzeni, S.
Baffigi, F.
Barbato, F.
Batani, D.
Boutoux, G.
D’Amato, F.
Dostal, J.
Dudzak, R.
Filippov, E.
Gu, Y. J.
Juha, L.
Klimo, O.
Krus, M.
Malko, S.
Martynenko, A. S.
Nicolai, Ph.
Ospina, V.
Pikuz, S.
Renner, O.
Santos, J.
Tikhonchuk, V. T.
Trela, J.
Viciani, S.
Volpe, L.
Weber, S.
Gizzi, L. A.
author Cristoforetti, G.
Antonelli, L.
Mancelli, D.
Atzeni, S.
Baffigi, F.
Barbato, F.
Batani, D.
Boutoux, G.
D’Amato, F.
Dostal, J.
Dudzak, R.
Filippov, E.
Gu, Y. J.
Juha, L.
Klimo, O.
Krus, M.
Malko, S.
Martynenko, A. S.
Nicolai, Ph.
Ospina, V.
Pikuz, S.
Renner, O.
Santos, J.
Tikhonchuk, V. T.
Trela, J.
Viciani, S.
Volpe, L.
Weber, S.
Gizzi, L. A.
spellingShingle Cristoforetti, G.
Antonelli, L.
Mancelli, D.
Atzeni, S.
Baffigi, F.
Barbato, F.
Batani, D.
Boutoux, G.
D’Amato, F.
Dostal, J.
Dudzak, R.
Filippov, E.
Gu, Y. J.
Juha, L.
Klimo, O.
Krus, M.
Malko, S.
Martynenko, A. S.
Nicolai, Ph.
Ospina, V.
Pikuz, S.
Renner, O.
Santos, J.
Tikhonchuk, V. T.
Trela, J.
Viciani, S.
Volpe, L.
Weber, S.
Gizzi, L. A.
High Power Laser Science and Engineering
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Nuclear Energy and Engineering
Nuclear and High Energy Physics
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
author_sort cristoforetti, g.
spelling Cristoforetti, G. Antonelli, L. Mancelli, D. Atzeni, S. Baffigi, F. Barbato, F. Batani, D. Boutoux, G. D’Amato, F. Dostal, J. Dudzak, R. Filippov, E. Gu, Y. J. Juha, L. Klimo, O. Krus, M. Malko, S. Martynenko, A. S. Nicolai, Ph. Ospina, V. Pikuz, S. Renner, O. Santos, J. Tikhonchuk, V. T. Trela, J. Viciani, S. Volpe, L. Weber, S. Gizzi, L. A. 2095-4719 2052-3289 Cambridge University Press (CUP) Nuclear Energy and Engineering Nuclear and High Energy Physics Atomic and Molecular Physics, and Optics Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1017/hpl.2019.37 <jats:p>Laser–plasma interaction (LPI) at intensities <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline1" xlink:type="simple" /><jats:tex-math>$10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline2" xlink:type="simple" /><jats:tex-math>${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> with a <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline3" xlink:type="simple" /><jats:tex-math>${\sim}100~\unicode[STIX]{x03BC}\text{m}$</jats:tex-math></jats:alternatives> </jats:inline-formula> scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (<jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline4" xlink:type="simple" /><jats:tex-math>${\sim}4~\text{keV}$</jats:tex-math></jats:alternatives> </jats:inline-formula>) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.</jats:p> Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma High Power Laser Science and Engineering
doi_str_mv 10.1017/hpl.2019.37
facet_avail Online
Free
finc_class_facet Physik
Technik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9ocGwuMjAxOS4zNw
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9ocGwuMjAxOS4zNw
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Cambridge University Press (CUP), 2019
imprint_str_mv Cambridge University Press (CUP), 2019
issn 2095-4719
2052-3289
issn_str_mv 2095-4719
2052-3289
language English
mega_collection Cambridge University Press (CUP) (CrossRef)
match_str cristoforetti2019timeevolutionofstimulatedramanscatteringandtwoplasmondecayatlaserintensitiesrelevantforshockignitioninahotplasma
publishDateSort 2019
publisher Cambridge University Press (CUP)
recordtype ai
record_format ai
series High Power Laser Science and Engineering
source_id 49
title Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_unstemmed Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_full Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_fullStr Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_full_unstemmed Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_short Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_sort time evolution of stimulated raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
topic Nuclear Energy and Engineering
Nuclear and High Energy Physics
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1017/hpl.2019.37
publishDate 2019
physical
description <jats:p>Laser–plasma interaction (LPI) at intensities <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline1" xlink:type="simple" /><jats:tex-math>$10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline2" xlink:type="simple" /><jats:tex-math>${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> with a <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline3" xlink:type="simple" /><jats:tex-math>${\sim}100~\unicode[STIX]{x03BC}\text{m}$</jats:tex-math></jats:alternatives> </jats:inline-formula> scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (<jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline4" xlink:type="simple" /><jats:tex-math>${\sim}4~\text{keV}$</jats:tex-math></jats:alternatives> </jats:inline-formula>) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.</jats:p>
container_start_page 0
container_title High Power Laser Science and Engineering
container_volume 7
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792340615575371792
geogr_code not assigned
last_indexed 2024-03-01T16:06:49.617Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Time+evolution+of+stimulated+Raman+scattering+and+two-plasmon+decay+at+laser+intensities+relevant+for+shock+ignition+in+a+hot+plasma&rft.date=2019-01-01&genre=article&issn=2052-3289&volume=7&jtitle=High+Power+Laser+Science+and+Engineering&atitle=Time+evolution+of+stimulated+Raman+scattering+and+two-plasmon+decay+at+laser+intensities+relevant+for+shock+ignition+in+a+hot+plasma&aulast=Gizzi&aufirst=L.+A.&rft_id=info%3Adoi%2F10.1017%2Fhpl.2019.37&rft.language%5B0%5D=eng
SOLR
_version_ 1792340615575371792
author Cristoforetti, G., Antonelli, L., Mancelli, D., Atzeni, S., Baffigi, F., Barbato, F., Batani, D., Boutoux, G., D’Amato, F., Dostal, J., Dudzak, R., Filippov, E., Gu, Y. J., Juha, L., Klimo, O., Krus, M., Malko, S., Martynenko, A. S., Nicolai, Ph., Ospina, V., Pikuz, S., Renner, O., Santos, J., Tikhonchuk, V. T., Trela, J., Viciani, S., Volpe, L., Weber, S., Gizzi, L. A.
author_facet Cristoforetti, G., Antonelli, L., Mancelli, D., Atzeni, S., Baffigi, F., Barbato, F., Batani, D., Boutoux, G., D’Amato, F., Dostal, J., Dudzak, R., Filippov, E., Gu, Y. J., Juha, L., Klimo, O., Krus, M., Malko, S., Martynenko, A. S., Nicolai, Ph., Ospina, V., Pikuz, S., Renner, O., Santos, J., Tikhonchuk, V. T., Trela, J., Viciani, S., Volpe, L., Weber, S., Gizzi, L. A., Cristoforetti, G., Antonelli, L., Mancelli, D., Atzeni, S., Baffigi, F., Barbato, F., Batani, D., Boutoux, G., D’Amato, F., Dostal, J., Dudzak, R., Filippov, E., Gu, Y. J., Juha, L., Klimo, O., Krus, M., Malko, S., Martynenko, A. S., Nicolai, Ph., Ospina, V., Pikuz, S., Renner, O., Santos, J., Tikhonchuk, V. T., Trela, J., Viciani, S., Volpe, L., Weber, S., Gizzi, L. A.
author_sort cristoforetti, g.
container_start_page 0
container_title High Power Laser Science and Engineering
container_volume 7
description <jats:p>Laser–plasma interaction (LPI) at intensities <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline1" xlink:type="simple" /><jats:tex-math>$10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline2" xlink:type="simple" /><jats:tex-math>${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> with a <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline3" xlink:type="simple" /><jats:tex-math>${\sim}100~\unicode[STIX]{x03BC}\text{m}$</jats:tex-math></jats:alternatives> </jats:inline-formula> scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (<jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline4" xlink:type="simple" /><jats:tex-math>${\sim}4~\text{keV}$</jats:tex-math></jats:alternatives> </jats:inline-formula>) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.</jats:p>
doi_str_mv 10.1017/hpl.2019.37
facet_avail Online, Free
finc_class_facet Physik, Technik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAxNy9ocGwuMjAxOS4zNw
imprint Cambridge University Press (CUP), 2019
imprint_str_mv Cambridge University Press (CUP), 2019
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 2095-4719, 2052-3289
issn_str_mv 2095-4719, 2052-3289
language English
last_indexed 2024-03-01T16:06:49.617Z
match_str cristoforetti2019timeevolutionofstimulatedramanscatteringandtwoplasmondecayatlaserintensitiesrelevantforshockignitioninahotplasma
mega_collection Cambridge University Press (CUP) (CrossRef)
physical
publishDate 2019
publishDateSort 2019
publisher Cambridge University Press (CUP)
record_format ai
recordtype ai
series High Power Laser Science and Engineering
source_id 49
spelling Cristoforetti, G. Antonelli, L. Mancelli, D. Atzeni, S. Baffigi, F. Barbato, F. Batani, D. Boutoux, G. D’Amato, F. Dostal, J. Dudzak, R. Filippov, E. Gu, Y. J. Juha, L. Klimo, O. Krus, M. Malko, S. Martynenko, A. S. Nicolai, Ph. Ospina, V. Pikuz, S. Renner, O. Santos, J. Tikhonchuk, V. T. Trela, J. Viciani, S. Volpe, L. Weber, S. Gizzi, L. A. 2095-4719 2052-3289 Cambridge University Press (CUP) Nuclear Energy and Engineering Nuclear and High Energy Physics Atomic and Molecular Physics, and Optics Electronic, Optical and Magnetic Materials http://dx.doi.org/10.1017/hpl.2019.37 <jats:p>Laser–plasma interaction (LPI) at intensities <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline1" xlink:type="simple" /><jats:tex-math>$10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline2" xlink:type="simple" /><jats:tex-math>${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$</jats:tex-math></jats:alternatives> </jats:inline-formula> with a <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline3" xlink:type="simple" /><jats:tex-math>${\sim}100~\unicode[STIX]{x03BC}\text{m}$</jats:tex-math></jats:alternatives> </jats:inline-formula> scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (<jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2095471919000379_inline4" xlink:type="simple" /><jats:tex-math>${\sim}4~\text{keV}$</jats:tex-math></jats:alternatives> </jats:inline-formula>) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.</jats:p> Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma High Power Laser Science and Engineering
spellingShingle Cristoforetti, G., Antonelli, L., Mancelli, D., Atzeni, S., Baffigi, F., Barbato, F., Batani, D., Boutoux, G., D’Amato, F., Dostal, J., Dudzak, R., Filippov, E., Gu, Y. J., Juha, L., Klimo, O., Krus, M., Malko, S., Martynenko, A. S., Nicolai, Ph., Ospina, V., Pikuz, S., Renner, O., Santos, J., Tikhonchuk, V. T., Trela, J., Viciani, S., Volpe, L., Weber, S., Gizzi, L. A., High Power Laser Science and Engineering, Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma, Nuclear Energy and Engineering, Nuclear and High Energy Physics, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials
title Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_full Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_fullStr Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_full_unstemmed Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_short Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_sort time evolution of stimulated raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
title_unstemmed Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
topic Nuclear Energy and Engineering, Nuclear and High Energy Physics, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials
url http://dx.doi.org/10.1017/hpl.2019.37