Details
Zusammenfassung: <jats:title>Abstract</jats:title><jats:p>By performing test particle simulations of relativistic electrons scattered by electromagnetic ion cyclotron (EMIC) rising tone emissions, we find a nonlinear scattering process named SLPA (Scattering at Low Pitch Angle) totally different from the nonlinear wave trapping. The nonlinear wave trapping, occurring for high pitch angles away from the loss cone, scatters some of resonant electrons to lower pitch angles, and a fraction of the electrons is further transported into the loss cone by SLPA after being released from the wave trapping. SLPA as well as the nonlinear wave trapping can work in any cases with proton band or helium band and inside or outside the plasmapause. We clarify that the combined scattering process causes significant depletion of the outer radiation belt. In the time evolution of an electron distribution observed locally in longitude, we find echoes of the electron depletion by the localized EMIC emissions. Monitoring fluxes of electrons being lost into the atmosphere in the wave generation region, we also find that efficient relativistic electron precipitation in several seconds. The characteristics of the precipitating electron flux as a function of kinetic energy vary significantly depending on the wave frequency range and the plasma density.</jats:p>
Umfang: 293-309
ISSN: 2169-9380
2169-9402
DOI: 10.1002/2016ja023267