author_facet Moreau, Sébastien
Vancoppenolle, Martin
Delille, Bruno
Tison, Jean‐Louis
Zhou, Jiayun
Kotovitch, Marie
Thomas, David N.
Geilfus, Nicolas‐Xavier
Goosse, Hugues
Moreau, Sébastien
Vancoppenolle, Martin
Delille, Bruno
Tison, Jean‐Louis
Zhou, Jiayun
Kotovitch, Marie
Thomas, David N.
Geilfus, Nicolas‐Xavier
Goosse, Hugues
author Moreau, Sébastien
Vancoppenolle, Martin
Delille, Bruno
Tison, Jean‐Louis
Zhou, Jiayun
Kotovitch, Marie
Thomas, David N.
Geilfus, Nicolas‐Xavier
Goosse, Hugues
spellingShingle Moreau, Sébastien
Vancoppenolle, Martin
Delille, Bruno
Tison, Jean‐Louis
Zhou, Jiayun
Kotovitch, Marie
Thomas, David N.
Geilfus, Nicolas‐Xavier
Goosse, Hugues
Journal of Geophysical Research: Oceans
Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
Earth and Planetary Sciences (miscellaneous)
Space and Planetary Science
Geochemistry and Petrology
Geophysics
Oceanography
author_sort moreau, sébastien
spelling Moreau, Sébastien Vancoppenolle, Martin Delille, Bruno Tison, Jean‐Louis Zhou, Jiayun Kotovitch, Marie Thomas, David N. Geilfus, Nicolas‐Xavier Goosse, Hugues 2169-9275 2169-9291 American Geophysical Union (AGU) Earth and Planetary Sciences (miscellaneous) Space and Planetary Science Geochemistry and Petrology Geophysics Oceanography http://dx.doi.org/10.1002/2014jc010388 <jats:title>Abstract</jats:title><jats:p>Sea ice is an active source or a sink for carbon dioxide (CO<jats:sub>2</jats:sub>), although to what extent is not clear. Here, we analyze CO<jats:sub>2</jats:sub> dynamics within sea ice using a one‐dimensional halothermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice‐ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO<jats:sub>2</jats:sub> by primary production and respiration, the precipitation and dissolution of ikaite (CaCO<jats:sub>3</jats:sub>·6H<jats:sub>2</jats:sub>O) and ice‐air CO<jats:sub>2</jats:sub> fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice‐tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine‐air CO<jats:sub>2</jats:sub> fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice‐atmosphere CO<jats:sub>2</jats:sub> exchanges, sea ice is a net CO<jats:sub>2</jats:sub> source and sink in winter and summer, respectively. The formulation of the ice‐atmosphere CO<jats:sub>2</jats:sub> flux impacts the simulated near‐surface CO<jats:sub>2</jats:sub> partial pressure (<jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub>), but not the DIC budget. Because the simulated ice‐atmosphere CO<jats:sub>2</jats:sub> fluxes are limited by DIC stocks, and therefore &lt;2 mmol m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>, we argue that the observed much larger CO<jats:sub>2</jats:sub> fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO<jats:sub>2</jats:sub>. Finally, the simulations suggest that near‐surface TA/DIC ratios of ∼2, sometimes used as an indicator of calcification, would rather suggest outgassing.</jats:p> Drivers of inorganic carbon dynamics in first‐year sea ice: A model study Journal of Geophysical Research: Oceans
doi_str_mv 10.1002/2014jc010388
facet_avail Online
Free
finc_class_facet Geographie
Physik
Technik
Chemie und Pharmazie
Allgemeine Naturwissenschaft
Geologie und Paläontologie
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi8yMDE0amMwMTAzODg
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi8yMDE0amMwMTAzODg
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint American Geophysical Union (AGU), 2015
imprint_str_mv American Geophysical Union (AGU), 2015
issn 2169-9275
2169-9291
issn_str_mv 2169-9275
2169-9291
language English
mega_collection American Geophysical Union (AGU) (CrossRef)
match_str moreau2015driversofinorganiccarbondynamicsinfirstyearseaiceamodelstudy
publishDateSort 2015
publisher American Geophysical Union (AGU)
recordtype ai
record_format ai
series Journal of Geophysical Research: Oceans
source_id 49
title Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_unstemmed Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_full Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_fullStr Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_full_unstemmed Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_short Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_sort drivers of inorganic carbon dynamics in first‐year sea ice: a model study
topic Earth and Planetary Sciences (miscellaneous)
Space and Planetary Science
Geochemistry and Petrology
Geophysics
Oceanography
url http://dx.doi.org/10.1002/2014jc010388
publishDate 2015
physical 471-495
description <jats:title>Abstract</jats:title><jats:p>Sea ice is an active source or a sink for carbon dioxide (CO<jats:sub>2</jats:sub>), although to what extent is not clear. Here, we analyze CO<jats:sub>2</jats:sub> dynamics within sea ice using a one‐dimensional halothermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice‐ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO<jats:sub>2</jats:sub> by primary production and respiration, the precipitation and dissolution of ikaite (CaCO<jats:sub>3</jats:sub>·6H<jats:sub>2</jats:sub>O) and ice‐air CO<jats:sub>2</jats:sub> fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice‐tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine‐air CO<jats:sub>2</jats:sub> fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice‐atmosphere CO<jats:sub>2</jats:sub> exchanges, sea ice is a net CO<jats:sub>2</jats:sub> source and sink in winter and summer, respectively. The formulation of the ice‐atmosphere CO<jats:sub>2</jats:sub> flux impacts the simulated near‐surface CO<jats:sub>2</jats:sub> partial pressure (<jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub>), but not the DIC budget. Because the simulated ice‐atmosphere CO<jats:sub>2</jats:sub> fluxes are limited by DIC stocks, and therefore &lt;2 mmol m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>, we argue that the observed much larger CO<jats:sub>2</jats:sub> fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO<jats:sub>2</jats:sub>. Finally, the simulations suggest that near‐surface TA/DIC ratios of ∼2, sometimes used as an indicator of calcification, would rather suggest outgassing.</jats:p>
container_issue 1
container_start_page 471
container_title Journal of Geophysical Research: Oceans
container_volume 120
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792340515323117570
geogr_code not assigned
last_indexed 2024-03-01T16:05:15.066Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Drivers+of+inorganic+carbon+dynamics+in+first%E2%80%90year+sea+ice%3A+A+model+study&rft.date=2015-01-01&genre=article&issn=2169-9291&volume=120&issue=1&spage=471&epage=495&pages=471-495&jtitle=Journal+of+Geophysical+Research%3A+Oceans&atitle=Drivers+of+inorganic+carbon+dynamics+in+first%E2%80%90year+sea+ice%3A+A+model+study&aulast=Goosse&aufirst=Hugues&rft_id=info%3Adoi%2F10.1002%2F2014jc010388&rft.language%5B0%5D=eng
SOLR
_version_ 1792340515323117570
author Moreau, Sébastien, Vancoppenolle, Martin, Delille, Bruno, Tison, Jean‐Louis, Zhou, Jiayun, Kotovitch, Marie, Thomas, David N., Geilfus, Nicolas‐Xavier, Goosse, Hugues
author_facet Moreau, Sébastien, Vancoppenolle, Martin, Delille, Bruno, Tison, Jean‐Louis, Zhou, Jiayun, Kotovitch, Marie, Thomas, David N., Geilfus, Nicolas‐Xavier, Goosse, Hugues, Moreau, Sébastien, Vancoppenolle, Martin, Delille, Bruno, Tison, Jean‐Louis, Zhou, Jiayun, Kotovitch, Marie, Thomas, David N., Geilfus, Nicolas‐Xavier, Goosse, Hugues
author_sort moreau, sébastien
container_issue 1
container_start_page 471
container_title Journal of Geophysical Research: Oceans
container_volume 120
description <jats:title>Abstract</jats:title><jats:p>Sea ice is an active source or a sink for carbon dioxide (CO<jats:sub>2</jats:sub>), although to what extent is not clear. Here, we analyze CO<jats:sub>2</jats:sub> dynamics within sea ice using a one‐dimensional halothermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice‐ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO<jats:sub>2</jats:sub> by primary production and respiration, the precipitation and dissolution of ikaite (CaCO<jats:sub>3</jats:sub>·6H<jats:sub>2</jats:sub>O) and ice‐air CO<jats:sub>2</jats:sub> fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice‐tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine‐air CO<jats:sub>2</jats:sub> fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice‐atmosphere CO<jats:sub>2</jats:sub> exchanges, sea ice is a net CO<jats:sub>2</jats:sub> source and sink in winter and summer, respectively. The formulation of the ice‐atmosphere CO<jats:sub>2</jats:sub> flux impacts the simulated near‐surface CO<jats:sub>2</jats:sub> partial pressure (<jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub>), but not the DIC budget. Because the simulated ice‐atmosphere CO<jats:sub>2</jats:sub> fluxes are limited by DIC stocks, and therefore &lt;2 mmol m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>, we argue that the observed much larger CO<jats:sub>2</jats:sub> fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO<jats:sub>2</jats:sub>. Finally, the simulations suggest that near‐surface TA/DIC ratios of ∼2, sometimes used as an indicator of calcification, would rather suggest outgassing.</jats:p>
doi_str_mv 10.1002/2014jc010388
facet_avail Online, Free
finc_class_facet Geographie, Physik, Technik, Chemie und Pharmazie, Allgemeine Naturwissenschaft, Geologie und Paläontologie
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi8yMDE0amMwMTAzODg
imprint American Geophysical Union (AGU), 2015
imprint_str_mv American Geophysical Union (AGU), 2015
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 2169-9275, 2169-9291
issn_str_mv 2169-9275, 2169-9291
language English
last_indexed 2024-03-01T16:05:15.066Z
match_str moreau2015driversofinorganiccarbondynamicsinfirstyearseaiceamodelstudy
mega_collection American Geophysical Union (AGU) (CrossRef)
physical 471-495
publishDate 2015
publishDateSort 2015
publisher American Geophysical Union (AGU)
record_format ai
recordtype ai
series Journal of Geophysical Research: Oceans
source_id 49
spelling Moreau, Sébastien Vancoppenolle, Martin Delille, Bruno Tison, Jean‐Louis Zhou, Jiayun Kotovitch, Marie Thomas, David N. Geilfus, Nicolas‐Xavier Goosse, Hugues 2169-9275 2169-9291 American Geophysical Union (AGU) Earth and Planetary Sciences (miscellaneous) Space and Planetary Science Geochemistry and Petrology Geophysics Oceanography http://dx.doi.org/10.1002/2014jc010388 <jats:title>Abstract</jats:title><jats:p>Sea ice is an active source or a sink for carbon dioxide (CO<jats:sub>2</jats:sub>), although to what extent is not clear. Here, we analyze CO<jats:sub>2</jats:sub> dynamics within sea ice using a one‐dimensional halothermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice‐ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO<jats:sub>2</jats:sub> by primary production and respiration, the precipitation and dissolution of ikaite (CaCO<jats:sub>3</jats:sub>·6H<jats:sub>2</jats:sub>O) and ice‐air CO<jats:sub>2</jats:sub> fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice‐tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine‐air CO<jats:sub>2</jats:sub> fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice‐atmosphere CO<jats:sub>2</jats:sub> exchanges, sea ice is a net CO<jats:sub>2</jats:sub> source and sink in winter and summer, respectively. The formulation of the ice‐atmosphere CO<jats:sub>2</jats:sub> flux impacts the simulated near‐surface CO<jats:sub>2</jats:sub> partial pressure (<jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub>), but not the DIC budget. Because the simulated ice‐atmosphere CO<jats:sub>2</jats:sub> fluxes are limited by DIC stocks, and therefore &lt;2 mmol m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>, we argue that the observed much larger CO<jats:sub>2</jats:sub> fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO<jats:sub>2</jats:sub>. Finally, the simulations suggest that near‐surface TA/DIC ratios of ∼2, sometimes used as an indicator of calcification, would rather suggest outgassing.</jats:p> Drivers of inorganic carbon dynamics in first‐year sea ice: A model study Journal of Geophysical Research: Oceans
spellingShingle Moreau, Sébastien, Vancoppenolle, Martin, Delille, Bruno, Tison, Jean‐Louis, Zhou, Jiayun, Kotovitch, Marie, Thomas, David N., Geilfus, Nicolas‐Xavier, Goosse, Hugues, Journal of Geophysical Research: Oceans, Drivers of inorganic carbon dynamics in first‐year sea ice: A model study, Earth and Planetary Sciences (miscellaneous), Space and Planetary Science, Geochemistry and Petrology, Geophysics, Oceanography
title Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_full Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_fullStr Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_full_unstemmed Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_short Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
title_sort drivers of inorganic carbon dynamics in first‐year sea ice: a model study
title_unstemmed Drivers of inorganic carbon dynamics in first‐year sea ice: A model study
topic Earth and Planetary Sciences (miscellaneous), Space and Planetary Science, Geochemistry and Petrology, Geophysics, Oceanography
url http://dx.doi.org/10.1002/2014jc010388