author_facet Kochan, Kamila
Perez-Guaita, David
Pissang, Julia
Jiang, Jhih-Hang
Peleg, Anton Y.
McNaughton, Don
Heraud, Philip
Wood, Bayden R.
Kochan, Kamila
Perez-Guaita, David
Pissang, Julia
Jiang, Jhih-Hang
Peleg, Anton Y.
McNaughton, Don
Heraud, Philip
Wood, Bayden R.
author Kochan, Kamila
Perez-Guaita, David
Pissang, Julia
Jiang, Jhih-Hang
Peleg, Anton Y.
McNaughton, Don
Heraud, Philip
Wood, Bayden R.
spellingShingle Kochan, Kamila
Perez-Guaita, David
Pissang, Julia
Jiang, Jhih-Hang
Peleg, Anton Y.
McNaughton, Don
Heraud, Philip
Wood, Bayden R.
Journal of The Royal Society Interface
In vivo atomic force microscopy–infrared spectroscopy of bacteria
Biomedical Engineering
Biochemistry
Biomaterials
Bioengineering
Biophysics
Biotechnology
author_sort kochan, kamila
spelling Kochan, Kamila Perez-Guaita, David Pissang, Julia Jiang, Jhih-Hang Peleg, Anton Y. McNaughton, Don Heraud, Philip Wood, Bayden R. 1742-5689 1742-5662 The Royal Society Biomedical Engineering Biochemistry Biomaterials Bioengineering Biophysics Biotechnology http://dx.doi.org/10.1098/rsif.2018.0115 <jats:p> A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy–infrared (AFM–IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in <jats:italic>Staphylococcus aureus</jats:italic> using AFM to demonstrate the division of the cell and AFM–IR to record spectra showing the thickening of the septum <jats:italic>.</jats:italic> This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from <jats:italic>S. aureus</jats:italic> and <jats:italic>Escherichia coli</jats:italic> containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM–IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor <jats:italic>in vivo</jats:italic> molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry. </jats:p> <i>In vivo</i> atomic force microscopy–infrared spectroscopy of bacteria Journal of The Royal Society Interface
doi_str_mv 10.1098/rsif.2018.0115
facet_avail Online
Free
finc_class_facet Biologie
Medizin
Technik
Chemie und Pharmazie
Physik
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5OC9yc2lmLjIwMTguMDExNQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5OC9yc2lmLjIwMTguMDExNQ
institution DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
imprint The Royal Society, 2018
imprint_str_mv The Royal Society, 2018
issn 1742-5689
1742-5662
issn_str_mv 1742-5689
1742-5662
language English
mega_collection The Royal Society (CrossRef)
match_str kochan2018invivoatomicforcemicroscopyinfraredspectroscopyofbacteria
publishDateSort 2018
publisher The Royal Society
recordtype ai
record_format ai
series Journal of The Royal Society Interface
source_id 49
title In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_unstemmed In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_full In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_fullStr In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_full_unstemmed In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_short In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_sort <i>in vivo</i> atomic force microscopy–infrared spectroscopy of bacteria
topic Biomedical Engineering
Biochemistry
Biomaterials
Bioengineering
Biophysics
Biotechnology
url http://dx.doi.org/10.1098/rsif.2018.0115
publishDate 2018
physical 20180115
description <jats:p> A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy–infrared (AFM–IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in <jats:italic>Staphylococcus aureus</jats:italic> using AFM to demonstrate the division of the cell and AFM–IR to record spectra showing the thickening of the septum <jats:italic>.</jats:italic> This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from <jats:italic>S. aureus</jats:italic> and <jats:italic>Escherichia coli</jats:italic> containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM–IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor <jats:italic>in vivo</jats:italic> molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry. </jats:p>
container_issue 140
container_start_page 0
container_title Journal of The Royal Society Interface
container_volume 15
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792346253763280900
geogr_code not assigned
last_indexed 2024-03-01T17:36:27.735Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=In+vivo++++++++++++atomic+force+microscopy%E2%80%93infrared+spectroscopy+of+bacteria&rft.date=2018-03-01&genre=article&issn=1742-5662&volume=15&issue=140&pages=20180115&jtitle=Journal+of+The+Royal+Society+Interface&atitle=%3Ci%3EIn+vivo%3C%2Fi%3E%0A++++++++++++atomic+force+microscopy%E2%80%93infrared+spectroscopy+of+bacteria&aulast=Wood&aufirst=Bayden+R.&rft_id=info%3Adoi%2F10.1098%2Frsif.2018.0115&rft.language%5B0%5D=eng
SOLR
_version_ 1792346253763280900
author Kochan, Kamila, Perez-Guaita, David, Pissang, Julia, Jiang, Jhih-Hang, Peleg, Anton Y., McNaughton, Don, Heraud, Philip, Wood, Bayden R.
author_facet Kochan, Kamila, Perez-Guaita, David, Pissang, Julia, Jiang, Jhih-Hang, Peleg, Anton Y., McNaughton, Don, Heraud, Philip, Wood, Bayden R., Kochan, Kamila, Perez-Guaita, David, Pissang, Julia, Jiang, Jhih-Hang, Peleg, Anton Y., McNaughton, Don, Heraud, Philip, Wood, Bayden R.
author_sort kochan, kamila
container_issue 140
container_start_page 0
container_title Journal of The Royal Society Interface
container_volume 15
description <jats:p> A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy–infrared (AFM–IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in <jats:italic>Staphylococcus aureus</jats:italic> using AFM to demonstrate the division of the cell and AFM–IR to record spectra showing the thickening of the septum <jats:italic>.</jats:italic> This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from <jats:italic>S. aureus</jats:italic> and <jats:italic>Escherichia coli</jats:italic> containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM–IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor <jats:italic>in vivo</jats:italic> molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry. </jats:p>
doi_str_mv 10.1098/rsif.2018.0115
facet_avail Online, Free
finc_class_facet Biologie, Medizin, Technik, Chemie und Pharmazie, Physik
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA5OC9yc2lmLjIwMTguMDExNQ
imprint The Royal Society, 2018
imprint_str_mv The Royal Society, 2018
institution DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161, DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229
issn 1742-5689, 1742-5662
issn_str_mv 1742-5689, 1742-5662
language English
last_indexed 2024-03-01T17:36:27.735Z
match_str kochan2018invivoatomicforcemicroscopyinfraredspectroscopyofbacteria
mega_collection The Royal Society (CrossRef)
physical 20180115
publishDate 2018
publishDateSort 2018
publisher The Royal Society
record_format ai
recordtype ai
series Journal of The Royal Society Interface
source_id 49
spelling Kochan, Kamila Perez-Guaita, David Pissang, Julia Jiang, Jhih-Hang Peleg, Anton Y. McNaughton, Don Heraud, Philip Wood, Bayden R. 1742-5689 1742-5662 The Royal Society Biomedical Engineering Biochemistry Biomaterials Bioengineering Biophysics Biotechnology http://dx.doi.org/10.1098/rsif.2018.0115 <jats:p> A new experimental platform for probing nanoscale molecular changes in living bacteria using atomic force microscopy–infrared (AFM–IR) spectroscopy is demonstrated. This near-field technique is eminently suited to the study of single bacterial cells. Here, we report its application to monitor dynamical changes occurring in the cell wall during cell division in <jats:italic>Staphylococcus aureus</jats:italic> using AFM to demonstrate the division of the cell and AFM–IR to record spectra showing the thickening of the septum <jats:italic>.</jats:italic> This work was followed by an investigation into single cells, with particular emphasis on cell-wall signatures, in several bacterial species. Specifically, mainly cell wall components from <jats:italic>S. aureus</jats:italic> and <jats:italic>Escherichia coli</jats:italic> containing complex carbohydrate and phosphodiester groups, including peptidoglycans and teichoic acid, could be identified and mapped at nanometre spatial resolution. Principal component analysis of AFM–IR spectra of six living bacterial species enabled the discrimination of Gram-positive from Gram-negative bacteria based on spectral bands originating mainly from the cell wall components. The ability to monitor <jats:italic>in vivo</jats:italic> molecular changes during cellular processes in bacteria at the nanoscale opens a new platform to study environmental influences and other factors that affect bacterial chemistry. </jats:p> <i>In vivo</i> atomic force microscopy–infrared spectroscopy of bacteria Journal of The Royal Society Interface
spellingShingle Kochan, Kamila, Perez-Guaita, David, Pissang, Julia, Jiang, Jhih-Hang, Peleg, Anton Y., McNaughton, Don, Heraud, Philip, Wood, Bayden R., Journal of The Royal Society Interface, In vivo atomic force microscopy–infrared spectroscopy of bacteria, Biomedical Engineering, Biochemistry, Biomaterials, Bioengineering, Biophysics, Biotechnology
title In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_full In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_fullStr In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_full_unstemmed In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_short In vivo atomic force microscopy–infrared spectroscopy of bacteria
title_sort <i>in vivo</i> atomic force microscopy–infrared spectroscopy of bacteria
title_unstemmed In vivo atomic force microscopy–infrared spectroscopy of bacteria
topic Biomedical Engineering, Biochemistry, Biomaterials, Bioengineering, Biophysics, Biotechnology
url http://dx.doi.org/10.1098/rsif.2018.0115