Details
Zusammenfassung: <p>This paper presents some results on the existence of homology decompositions in the context of the equivariant homotopy theory of Bredon. To avoid certain obstructions to the existence of equivariant Moore spaces occurring already in classical equivariant homotopy theory, most of the work of this paper is done “over the rationals.” The standard construction of homology decompositions by Eckmann and Hilton can be followed in the present equivariant context until it is necessary to produce appropriate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k prime"> <mml:semantics> <mml:msup> <mml:mi>k</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">k’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariants. For these, the Eckmann-Hilton construction uses a certain Universal Coefficient Theorem for homotopy sets. The relevant extension of this to the equivariant situation is an equivariant Federer spectral sequence, which is developed in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="section-sign 2"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">§<!-- § --></mml:mi> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\S 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using this, we can formulate conditions which imply the existence of the desired <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k prime"> <mml:semantics> <mml:msup> <mml:mi>k</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">k’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariants, and hence the existence of the homology decomposition. The conditions involve a certain notion of projective dimension. For one application, equivariant homology decompositions always exist when the group has prime order.</p>
Umfang: 273-287
ISSN: 0002-9947
1088-6850
DOI: 10.1090/s0002-9947-1986-0857444-0