Details
Zusammenfassung: <jats:p>The Leptospiraceae are thin spirochetes with a unique mode of motility. These spiral-shaped bacteria have internal periplasmic flagella that propel the cells in low-viscosity and gel-like high-viscosity media. A model of Leptospiraceae motility has been previously proposed that states that the subterminally attached periplasmic flagella rotate between the outer sheath and the helical protoplasmic cylinder. The shape of the cell ends and the direction of gyration of these ends are determined by the direction of rotation of the internal periplasmic flagella. Rotation of the periplasmic flagella in one direction causes that end to be spiral-shaped, and rotation in the other direction causes that end to be hook-shaped. One prediction of the model is that these right-handed spirochetes roll clockwise when swimming away from an observer. For maximum swimming efficiency, the model predicts that the sense of the spiral-shaped end is left-handed and gyrates counterclockwise. The present study presents direct evidence that the cell rolls clockwise (protoplasmic cylinder helix diameter = 0.24 micron; pitch = 0.69 micron), the ends gyrate counterclockwise, and the spiral-shaped end is left-handed (helix diameter = 0.6 micron; pitch = 2.7 microns)--as predicted by the model. The hook-shaped end appears approximately planar. The approach used was to illuminate stroboscopically cells slowed by Ficoll and analyze the resultant multiple-exposure photographs focused above and below the axis of the cell. The methodology used should be helpful in analyzing the motility of the larger and more complex spirochetes.</jats:p>
Umfang: 4895-4899
ISSN: 0027-8424
1091-6490
DOI: 10.1073/pnas.87.13.4895