author_facet Grant, Margaret J.
Loftus, Matthew S.
Stoja, Aiola P.
Kedes, Dean H.
Smith, M. Mitchell
Grant, Margaret J.
Loftus, Matthew S.
Stoja, Aiola P.
Kedes, Dean H.
Smith, M. Mitchell
author Grant, Margaret J.
Loftus, Matthew S.
Stoja, Aiola P.
Kedes, Dean H.
Smith, M. Mitchell
spellingShingle Grant, Margaret J.
Loftus, Matthew S.
Stoja, Aiola P.
Kedes, Dean H.
Smith, M. Mitchell
Proceedings of the National Academy of Sciences
Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
Multidisciplinary
author_sort grant, margaret j.
spelling Grant, Margaret J. Loftus, Matthew S. Stoja, Aiola P. Kedes, Dean H. Smith, M. Mitchell 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1721638115 <jats:title>Significance</jats:title> <jats:p>Kaposi’s sarcoma-associated herpesvirus propagates by attaching to host chromatin. This tether is essential for viral maintenance, and its disruption represents a potential treatment for persistent infection. However, fundamental questions remain, including how the underlying viral chromatin is folded, how the tether protein is organized, and how it is presented for host attachment. Using superresolution fluorescence microscopy, we have visualized single tethers in cells and built a working model of their structure. The folding of the viral chromatin mimics that of active chromatin, driven by nucleosome positioning and DNA bending. Furthermore, tether proteins are arranged in ordered clusters projected outward from the viral chromatin axis. These principles are likely to be applicable to the tethers of other DNA tumor viruses.</jats:p> Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether Proceedings of the National Academy of Sciences
doi_str_mv 10.1073/pnas.1721638115
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE3MjE2MzgxMTU
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE3MjE2MzgxMTU
institution DE-Gla1
DE-Zi4
DE-15
DE-Rs1
DE-Pl11
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Proceedings of the National Academy of Sciences, 2018
imprint_str_mv Proceedings of the National Academy of Sciences, 2018
issn 0027-8424
1091-6490
issn_str_mv 0027-8424
1091-6490
language English
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
match_str grant2018superresolutionmicroscopyrevealsstructuralmechanismsdrivingthenanoarchitectureofaviralchromatintether
publishDateSort 2018
publisher Proceedings of the National Academy of Sciences
recordtype ai
record_format ai
series Proceedings of the National Academy of Sciences
source_id 49
title Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_unstemmed Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_full Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_fullStr Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_full_unstemmed Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_short Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_sort superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1721638115
publishDate 2018
physical 4992-4997
description <jats:title>Significance</jats:title> <jats:p>Kaposi’s sarcoma-associated herpesvirus propagates by attaching to host chromatin. This tether is essential for viral maintenance, and its disruption represents a potential treatment for persistent infection. However, fundamental questions remain, including how the underlying viral chromatin is folded, how the tether protein is organized, and how it is presented for host attachment. Using superresolution fluorescence microscopy, we have visualized single tethers in cells and built a working model of their structure. The folding of the viral chromatin mimics that of active chromatin, driven by nucleosome positioning and DNA bending. Furthermore, tether proteins are arranged in ordered clusters projected outward from the viral chromatin axis. These principles are likely to be applicable to the tethers of other DNA tumor viruses.</jats:p>
container_issue 19
container_start_page 4992
container_title Proceedings of the National Academy of Sciences
container_volume 115
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792348057736577026
geogr_code not assigned
last_indexed 2024-03-01T18:05:07.291Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Superresolution+microscopy+reveals+structural+mechanisms+driving+the+nanoarchitecture+of+a+viral+chromatin+tether&rft.date=2018-05-08&genre=article&issn=1091-6490&volume=115&issue=19&spage=4992&epage=4997&pages=4992-4997&jtitle=Proceedings+of+the+National+Academy+of+Sciences&atitle=Superresolution+microscopy+reveals+structural+mechanisms+driving+the+nanoarchitecture+of+a+viral+chromatin+tether&aulast=Smith&aufirst=M.+Mitchell&rft_id=info%3Adoi%2F10.1073%2Fpnas.1721638115&rft.language%5B0%5D=eng
SOLR
_version_ 1792348057736577026
author Grant, Margaret J., Loftus, Matthew S., Stoja, Aiola P., Kedes, Dean H., Smith, M. Mitchell
author_facet Grant, Margaret J., Loftus, Matthew S., Stoja, Aiola P., Kedes, Dean H., Smith, M. Mitchell, Grant, Margaret J., Loftus, Matthew S., Stoja, Aiola P., Kedes, Dean H., Smith, M. Mitchell
author_sort grant, margaret j.
container_issue 19
container_start_page 4992
container_title Proceedings of the National Academy of Sciences
container_volume 115
description <jats:title>Significance</jats:title> <jats:p>Kaposi’s sarcoma-associated herpesvirus propagates by attaching to host chromatin. This tether is essential for viral maintenance, and its disruption represents a potential treatment for persistent infection. However, fundamental questions remain, including how the underlying viral chromatin is folded, how the tether protein is organized, and how it is presented for host attachment. Using superresolution fluorescence microscopy, we have visualized single tethers in cells and built a working model of their structure. The folding of the viral chromatin mimics that of active chromatin, driven by nucleosome positioning and DNA bending. Furthermore, tether proteins are arranged in ordered clusters projected outward from the viral chromatin axis. These principles are likely to be applicable to the tethers of other DNA tumor viruses.</jats:p>
doi_str_mv 10.1073/pnas.1721638115
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE3MjE2MzgxMTU
imprint Proceedings of the National Academy of Sciences, 2018
imprint_str_mv Proceedings of the National Academy of Sciences, 2018
institution DE-Gla1, DE-Zi4, DE-15, DE-Rs1, DE-Pl11, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0027-8424, 1091-6490
issn_str_mv 0027-8424, 1091-6490
language English
last_indexed 2024-03-01T18:05:07.291Z
match_str grant2018superresolutionmicroscopyrevealsstructuralmechanismsdrivingthenanoarchitectureofaviralchromatintether
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
physical 4992-4997
publishDate 2018
publishDateSort 2018
publisher Proceedings of the National Academy of Sciences
record_format ai
recordtype ai
series Proceedings of the National Academy of Sciences
source_id 49
spelling Grant, Margaret J. Loftus, Matthew S. Stoja, Aiola P. Kedes, Dean H. Smith, M. Mitchell 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1721638115 <jats:title>Significance</jats:title> <jats:p>Kaposi’s sarcoma-associated herpesvirus propagates by attaching to host chromatin. This tether is essential for viral maintenance, and its disruption represents a potential treatment for persistent infection. However, fundamental questions remain, including how the underlying viral chromatin is folded, how the tether protein is organized, and how it is presented for host attachment. Using superresolution fluorescence microscopy, we have visualized single tethers in cells and built a working model of their structure. The folding of the viral chromatin mimics that of active chromatin, driven by nucleosome positioning and DNA bending. Furthermore, tether proteins are arranged in ordered clusters projected outward from the viral chromatin axis. These principles are likely to be applicable to the tethers of other DNA tumor viruses.</jats:p> Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether Proceedings of the National Academy of Sciences
spellingShingle Grant, Margaret J., Loftus, Matthew S., Stoja, Aiola P., Kedes, Dean H., Smith, M. Mitchell, Proceedings of the National Academy of Sciences, Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether, Multidisciplinary
title Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_full Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_fullStr Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_full_unstemmed Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_short Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_sort superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
title_unstemmed Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1721638115