author_facet Lanzillo, Nicholas A.
Thomas, Jay B.
Watson, Bruce
Washington, Morris
Nayak, Saroj K.
Lanzillo, Nicholas A.
Thomas, Jay B.
Watson, Bruce
Washington, Morris
Nayak, Saroj K.
author Lanzillo, Nicholas A.
Thomas, Jay B.
Watson, Bruce
Washington, Morris
Nayak, Saroj K.
spellingShingle Lanzillo, Nicholas A.
Thomas, Jay B.
Watson, Bruce
Washington, Morris
Nayak, Saroj K.
Proceedings of the National Academy of Sciences
Pressure-enabled phonon engineering in metals
Multidisciplinary
author_sort lanzillo, nicholas a.
spelling Lanzillo, Nicholas A. Thomas, Jay B. Watson, Bruce Washington, Morris Nayak, Saroj K. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1406721111 <jats:title>Significance</jats:title> <jats:p>Understanding the pressure response of the electrical properties of metals provides a fundamental way of manipulating material properties for potential device applications. In particular, the electrical resistivity of a metal, which is an intrinsic property determined primarily by the interaction strength between electrons and collective lattice vibrations (phonons), can be reduced when the metal is pressurized. In this article, we show that first-principles calculations of the resistivity, as well as experimental measurements using a solid media piston–cylinder apparatus, predict a significant reduction in the electrical resistivity of aluminum and copper when subject to high pressure due primarily to the reduction in the electron–phonon interaction strength. This study suggests innovative ways of controlling transport phenomena in metals.</jats:p> Pressure-enabled phonon engineering in metals Proceedings of the National Academy of Sciences
doi_str_mv 10.1073/pnas.1406721111
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE0MDY3MjExMTE
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE0MDY3MjExMTE
institution DE-105
DE-Bn3
DE-Brt1
DE-Ch1
DE-D161
DE-D275
DE-Gla1
DE-L229
DE-Pl11
DE-Rs1
DE-Zi4
DE-Zwi2
imprint Proceedings of the National Academy of Sciences, 2014
imprint_str_mv Proceedings of the National Academy of Sciences, 2014
issn 0027-8424
1091-6490
issn_str_mv 0027-8424
1091-6490
language English
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
match_str lanzillo2014pressureenabledphononengineeringinmetals
publishDateSort 2014
publisher Proceedings of the National Academy of Sciences
recordtype ai
record_format ai
series Proceedings of the National Academy of Sciences
source_id 49
title Pressure-enabled phonon engineering in metals
title_unstemmed Pressure-enabled phonon engineering in metals
title_full Pressure-enabled phonon engineering in metals
title_fullStr Pressure-enabled phonon engineering in metals
title_full_unstemmed Pressure-enabled phonon engineering in metals
title_short Pressure-enabled phonon engineering in metals
title_sort pressure-enabled phonon engineering in metals
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1406721111
publishDate 2014
physical 8712-8716
description <jats:title>Significance</jats:title> <jats:p>Understanding the pressure response of the electrical properties of metals provides a fundamental way of manipulating material properties for potential device applications. In particular, the electrical resistivity of a metal, which is an intrinsic property determined primarily by the interaction strength between electrons and collective lattice vibrations (phonons), can be reduced when the metal is pressurized. In this article, we show that first-principles calculations of the resistivity, as well as experimental measurements using a solid media piston–cylinder apparatus, predict a significant reduction in the electrical resistivity of aluminum and copper when subject to high pressure due primarily to the reduction in the electron–phonon interaction strength. This study suggests innovative ways of controlling transport phenomena in metals.</jats:p>
container_issue 24
container_start_page 8712
container_title Proceedings of the National Academy of Sciences
container_volume 111
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792343305730654224
geogr_code not assigned
last_indexed 2024-03-01T16:49:35.108Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Pressure-enabled+phonon+engineering+in+metals&rft.date=2014-06-17&genre=article&issn=1091-6490&volume=111&issue=24&spage=8712&epage=8716&pages=8712-8716&jtitle=Proceedings+of+the+National+Academy+of+Sciences&atitle=Pressure-enabled+phonon+engineering+in+metals&aulast=Nayak&aufirst=Saroj+K.&rft_id=info%3Adoi%2F10.1073%2Fpnas.1406721111&rft.language%5B0%5D=eng
SOLR
_version_ 1792343305730654224
author Lanzillo, Nicholas A., Thomas, Jay B., Watson, Bruce, Washington, Morris, Nayak, Saroj K.
author_facet Lanzillo, Nicholas A., Thomas, Jay B., Watson, Bruce, Washington, Morris, Nayak, Saroj K., Lanzillo, Nicholas A., Thomas, Jay B., Watson, Bruce, Washington, Morris, Nayak, Saroj K.
author_sort lanzillo, nicholas a.
container_issue 24
container_start_page 8712
container_title Proceedings of the National Academy of Sciences
container_volume 111
description <jats:title>Significance</jats:title> <jats:p>Understanding the pressure response of the electrical properties of metals provides a fundamental way of manipulating material properties for potential device applications. In particular, the electrical resistivity of a metal, which is an intrinsic property determined primarily by the interaction strength between electrons and collective lattice vibrations (phonons), can be reduced when the metal is pressurized. In this article, we show that first-principles calculations of the resistivity, as well as experimental measurements using a solid media piston–cylinder apparatus, predict a significant reduction in the electrical resistivity of aluminum and copper when subject to high pressure due primarily to the reduction in the electron–phonon interaction strength. This study suggests innovative ways of controlling transport phenomena in metals.</jats:p>
doi_str_mv 10.1073/pnas.1406721111
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjE0MDY3MjExMTE
imprint Proceedings of the National Academy of Sciences, 2014
imprint_str_mv Proceedings of the National Academy of Sciences, 2014
institution DE-105, DE-Bn3, DE-Brt1, DE-Ch1, DE-D161, DE-D275, DE-Gla1, DE-L229, DE-Pl11, DE-Rs1, DE-Zi4, DE-Zwi2
issn 0027-8424, 1091-6490
issn_str_mv 0027-8424, 1091-6490
language English
last_indexed 2024-03-01T16:49:35.108Z
match_str lanzillo2014pressureenabledphononengineeringinmetals
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
physical 8712-8716
publishDate 2014
publishDateSort 2014
publisher Proceedings of the National Academy of Sciences
record_format ai
recordtype ai
series Proceedings of the National Academy of Sciences
source_id 49
spelling Lanzillo, Nicholas A. Thomas, Jay B. Watson, Bruce Washington, Morris Nayak, Saroj K. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.1406721111 <jats:title>Significance</jats:title> <jats:p>Understanding the pressure response of the electrical properties of metals provides a fundamental way of manipulating material properties for potential device applications. In particular, the electrical resistivity of a metal, which is an intrinsic property determined primarily by the interaction strength between electrons and collective lattice vibrations (phonons), can be reduced when the metal is pressurized. In this article, we show that first-principles calculations of the resistivity, as well as experimental measurements using a solid media piston–cylinder apparatus, predict a significant reduction in the electrical resistivity of aluminum and copper when subject to high pressure due primarily to the reduction in the electron–phonon interaction strength. This study suggests innovative ways of controlling transport phenomena in metals.</jats:p> Pressure-enabled phonon engineering in metals Proceedings of the National Academy of Sciences
spellingShingle Lanzillo, Nicholas A., Thomas, Jay B., Watson, Bruce, Washington, Morris, Nayak, Saroj K., Proceedings of the National Academy of Sciences, Pressure-enabled phonon engineering in metals, Multidisciplinary
title Pressure-enabled phonon engineering in metals
title_full Pressure-enabled phonon engineering in metals
title_fullStr Pressure-enabled phonon engineering in metals
title_full_unstemmed Pressure-enabled phonon engineering in metals
title_short Pressure-enabled phonon engineering in metals
title_sort pressure-enabled phonon engineering in metals
title_unstemmed Pressure-enabled phonon engineering in metals
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.1406721111