author_facet Shan, Yibing
Seeliger, Markus A.
Eastwood, Michael P.
Frank, Filipp
Xu, Huafeng
Jensen, Morten Ø
Dror, Ron O.
Kuriyan, John
Shaw, David E.
Shan, Yibing
Seeliger, Markus A.
Eastwood, Michael P.
Frank, Filipp
Xu, Huafeng
Jensen, Morten Ø
Dror, Ron O.
Kuriyan, John
Shaw, David E.
author Shan, Yibing
Seeliger, Markus A.
Eastwood, Michael P.
Frank, Filipp
Xu, Huafeng
Jensen, Morten Ø
Dror, Ron O.
Kuriyan, John
Shaw, David E.
spellingShingle Shan, Yibing
Seeliger, Markus A.
Eastwood, Michael P.
Frank, Filipp
Xu, Huafeng
Jensen, Morten Ø
Dror, Ron O.
Kuriyan, John
Shaw, David E.
Proceedings of the National Academy of Sciences
A conserved protonation-dependent switch controls drug binding in the Abl kinase
Multidisciplinary
author_sort shan, yibing
spelling Shan, Yibing Seeliger, Markus A. Eastwood, Michael P. Frank, Filipp Xu, Huafeng Jensen, Morten Ø Dror, Ron O. Kuriyan, John Shaw, David E. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.0811223106 <jats:p>In many protein kinases, a characteristic conformational change (the “DFG flip”) connects catalytically active and inactive conformations. Many kinase inhibitors—including the cancer drug imatinib—selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.</jats:p> A conserved protonation-dependent switch controls drug binding in the Abl kinase Proceedings of the National Academy of Sciences
doi_str_mv 10.1073/pnas.0811223106
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA4MTEyMjMxMDY
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA4MTEyMjMxMDY
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-Zwi2
DE-D161
imprint Proceedings of the National Academy of Sciences, 2009
imprint_str_mv Proceedings of the National Academy of Sciences, 2009
issn 0027-8424
1091-6490
issn_str_mv 0027-8424
1091-6490
language English
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
match_str shan2009aconservedprotonationdependentswitchcontrolsdrugbindingintheablkinase
publishDateSort 2009
publisher Proceedings of the National Academy of Sciences
recordtype ai
record_format ai
series Proceedings of the National Academy of Sciences
source_id 49
title A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_unstemmed A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_full A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_fullStr A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_full_unstemmed A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_short A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_sort a conserved protonation-dependent switch controls drug binding in the abl kinase
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.0811223106
publishDate 2009
physical 139-144
description <jats:p>In many protein kinases, a characteristic conformational change (the “DFG flip”) connects catalytically active and inactive conformations. Many kinase inhibitors—including the cancer drug imatinib—selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.</jats:p>
container_issue 1
container_start_page 139
container_title Proceedings of the National Academy of Sciences
container_volume 106
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792348240048291848
geogr_code not assigned
last_indexed 2024-03-01T18:08:01.804Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=A+conserved+protonation-dependent+switch+controls+drug+binding+in+the+Abl+kinase&rft.date=2009-01-06&genre=article&issn=1091-6490&volume=106&issue=1&spage=139&epage=144&pages=139-144&jtitle=Proceedings+of+the+National+Academy+of+Sciences&atitle=A+conserved+protonation-dependent+switch+controls+drug+binding+in+the+Abl+kinase&aulast=Shaw&aufirst=David+E.&rft_id=info%3Adoi%2F10.1073%2Fpnas.0811223106&rft.language%5B0%5D=eng
SOLR
_version_ 1792348240048291848
author Shan, Yibing, Seeliger, Markus A., Eastwood, Michael P., Frank, Filipp, Xu, Huafeng, Jensen, Morten Ø, Dror, Ron O., Kuriyan, John, Shaw, David E.
author_facet Shan, Yibing, Seeliger, Markus A., Eastwood, Michael P., Frank, Filipp, Xu, Huafeng, Jensen, Morten Ø, Dror, Ron O., Kuriyan, John, Shaw, David E., Shan, Yibing, Seeliger, Markus A., Eastwood, Michael P., Frank, Filipp, Xu, Huafeng, Jensen, Morten Ø, Dror, Ron O., Kuriyan, John, Shaw, David E.
author_sort shan, yibing
container_issue 1
container_start_page 139
container_title Proceedings of the National Academy of Sciences
container_volume 106
description <jats:p>In many protein kinases, a characteristic conformational change (the “DFG flip”) connects catalytically active and inactive conformations. Many kinase inhibitors—including the cancer drug imatinib—selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.</jats:p>
doi_str_mv 10.1073/pnas.0811223106
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA4MTEyMjMxMDY
imprint Proceedings of the National Academy of Sciences, 2009
imprint_str_mv Proceedings of the National Academy of Sciences, 2009
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-Zwi2, DE-D161
issn 0027-8424, 1091-6490
issn_str_mv 0027-8424, 1091-6490
language English
last_indexed 2024-03-01T18:08:01.804Z
match_str shan2009aconservedprotonationdependentswitchcontrolsdrugbindingintheablkinase
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
physical 139-144
publishDate 2009
publishDateSort 2009
publisher Proceedings of the National Academy of Sciences
record_format ai
recordtype ai
series Proceedings of the National Academy of Sciences
source_id 49
spelling Shan, Yibing Seeliger, Markus A. Eastwood, Michael P. Frank, Filipp Xu, Huafeng Jensen, Morten Ø Dror, Ron O. Kuriyan, John Shaw, David E. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.0811223106 <jats:p>In many protein kinases, a characteristic conformational change (the “DFG flip”) connects catalytically active and inactive conformations. Many kinase inhibitors—including the cancer drug imatinib—selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.</jats:p> A conserved protonation-dependent switch controls drug binding in the Abl kinase Proceedings of the National Academy of Sciences
spellingShingle Shan, Yibing, Seeliger, Markus A., Eastwood, Michael P., Frank, Filipp, Xu, Huafeng, Jensen, Morten Ø, Dror, Ron O., Kuriyan, John, Shaw, David E., Proceedings of the National Academy of Sciences, A conserved protonation-dependent switch controls drug binding in the Abl kinase, Multidisciplinary
title A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_full A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_fullStr A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_full_unstemmed A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_short A conserved protonation-dependent switch controls drug binding in the Abl kinase
title_sort a conserved protonation-dependent switch controls drug binding in the abl kinase
title_unstemmed A conserved protonation-dependent switch controls drug binding in the Abl kinase
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.0811223106