author_facet Wieland, Shannon C.
Brownstein, John S.
Berger, Bonnie
Mandl, Kenneth D.
Wieland, Shannon C.
Brownstein, John S.
Berger, Bonnie
Mandl, Kenneth D.
author Wieland, Shannon C.
Brownstein, John S.
Berger, Bonnie
Mandl, Kenneth D.
spellingShingle Wieland, Shannon C.
Brownstein, John S.
Berger, Bonnie
Mandl, Kenneth D.
Proceedings of the National Academy of Sciences
Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
Multidisciplinary
author_sort wieland, shannon c.
spelling Wieland, Shannon C. Brownstein, John S. Berger, Bonnie Mandl, Kenneth D. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.0609457104 <jats:p>Existing disease cluster detection methods cannot detect clusters of all shapes and sizes or identify highly irregular sets that overestimate the true extent of the cluster. We introduce a graph-theoretical method for detecting arbitrarily shaped clusters based on the Euclidean minimum spanning tree of cartogram-transformed case locations, which overcomes these shortcomings. The method is illustrated by using several clusters, including historical data sets from West Nile virus and inhalational anthrax outbreaks. Sensitivity and accuracy comparisons with the prevailing cluster detection method show that the method performs similarly on approximately circular historical clusters and greatly improves detection for noncircular clusters.</jats:p> Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes Proceedings of the National Academy of Sciences
doi_str_mv 10.1073/pnas.0609457104
facet_avail Online
Free
format ElectronicArticle
fullrecord blob:ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA2MDk0NTcxMDQ
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA2MDk0NTcxMDQ
institution DE-Gla1
DE-Zi4
DE-15
DE-Pl11
DE-Rs1
DE-105
DE-14
DE-Ch1
DE-L229
DE-D275
DE-Bn3
DE-Brt1
DE-D161
DE-Zwi2
imprint Proceedings of the National Academy of Sciences, 2007
imprint_str_mv Proceedings of the National Academy of Sciences, 2007
issn 1091-6490
0027-8424
issn_str_mv 1091-6490
0027-8424
language English
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
match_str wieland2007densityequalizingeuclideanminimumspanningtreesforthedetectionofalldiseaseclustershapes
publishDateSort 2007
publisher Proceedings of the National Academy of Sciences
recordtype ai
record_format ai
series Proceedings of the National Academy of Sciences
source_id 49
title Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_unstemmed Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_full Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_fullStr Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_full_unstemmed Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_short Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_sort density-equalizing euclidean minimum spanning trees for the detection of all disease cluster shapes
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.0609457104
publishDate 2007
physical 9404-9409
description <jats:p>Existing disease cluster detection methods cannot detect clusters of all shapes and sizes or identify highly irregular sets that overestimate the true extent of the cluster. We introduce a graph-theoretical method for detecting arbitrarily shaped clusters based on the Euclidean minimum spanning tree of cartogram-transformed case locations, which overcomes these shortcomings. The method is illustrated by using several clusters, including historical data sets from West Nile virus and inhalational anthrax outbreaks. Sensitivity and accuracy comparisons with the prevailing cluster detection method show that the method performs similarly on approximately circular historical clusters and greatly improves detection for noncircular clusters.</jats:p>
container_issue 22
container_start_page 9404
container_title Proceedings of the National Academy of Sciences
container_volume 104
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
_version_ 1792337451889459201
geogr_code not assigned
last_indexed 2024-03-01T15:16:33.052Z
geogr_code_person not assigned
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Density-equalizing+Euclidean+minimum+spanning+trees+for+the+detection+of+all+disease+cluster+shapes&rft.date=2007-05-29&genre=article&issn=1091-6490&volume=104&issue=22&spage=9404&epage=9409&pages=9404-9409&jtitle=Proceedings+of+the+National+Academy+of+Sciences&atitle=Density-equalizing+Euclidean+minimum+spanning+trees+for+the+detection+of+all+disease+cluster+shapes&aulast=Mandl&aufirst=Kenneth+D.&rft_id=info%3Adoi%2F10.1073%2Fpnas.0609457104&rft.language%5B0%5D=eng
SOLR
_version_ 1792337451889459201
author Wieland, Shannon C., Brownstein, John S., Berger, Bonnie, Mandl, Kenneth D.
author_facet Wieland, Shannon C., Brownstein, John S., Berger, Bonnie, Mandl, Kenneth D., Wieland, Shannon C., Brownstein, John S., Berger, Bonnie, Mandl, Kenneth D.
author_sort wieland, shannon c.
container_issue 22
container_start_page 9404
container_title Proceedings of the National Academy of Sciences
container_volume 104
description <jats:p>Existing disease cluster detection methods cannot detect clusters of all shapes and sizes or identify highly irregular sets that overestimate the true extent of the cluster. We introduce a graph-theoretical method for detecting arbitrarily shaped clusters based on the Euclidean minimum spanning tree of cartogram-transformed case locations, which overcomes these shortcomings. The method is illustrated by using several clusters, including historical data sets from West Nile virus and inhalational anthrax outbreaks. Sensitivity and accuracy comparisons with the prevailing cluster detection method show that the method performs similarly on approximately circular historical clusters and greatly improves detection for noncircular clusters.</jats:p>
doi_str_mv 10.1073/pnas.0609457104
facet_avail Online, Free
format ElectronicArticle
format_de105 Article, E-Article
format_de14 Article, E-Article
format_de15 Article, E-Article
format_de520 Article, E-Article
format_de540 Article, E-Article
format_dech1 Article, E-Article
format_ded117 Article, E-Article
format_degla1 E-Article
format_del152 Buch
format_del189 Article, E-Article
format_dezi4 Article
format_dezwi2 Article, E-Article
format_finc Article, E-Article
format_nrw Article, E-Article
geogr_code not assigned
geogr_code_person not assigned
id ai-49-aHR0cDovL2R4LmRvaS5vcmcvMTAuMTA3My9wbmFzLjA2MDk0NTcxMDQ
imprint Proceedings of the National Academy of Sciences, 2007
imprint_str_mv Proceedings of the National Academy of Sciences, 2007
institution DE-Gla1, DE-Zi4, DE-15, DE-Pl11, DE-Rs1, DE-105, DE-14, DE-Ch1, DE-L229, DE-D275, DE-Bn3, DE-Brt1, DE-D161, DE-Zwi2
issn 1091-6490, 0027-8424
issn_str_mv 1091-6490, 0027-8424
language English
last_indexed 2024-03-01T15:16:33.052Z
match_str wieland2007densityequalizingeuclideanminimumspanningtreesforthedetectionofalldiseaseclustershapes
mega_collection Proceedings of the National Academy of Sciences (CrossRef)
physical 9404-9409
publishDate 2007
publishDateSort 2007
publisher Proceedings of the National Academy of Sciences
record_format ai
recordtype ai
series Proceedings of the National Academy of Sciences
source_id 49
spelling Wieland, Shannon C. Brownstein, John S. Berger, Bonnie Mandl, Kenneth D. 0027-8424 1091-6490 Proceedings of the National Academy of Sciences Multidisciplinary http://dx.doi.org/10.1073/pnas.0609457104 <jats:p>Existing disease cluster detection methods cannot detect clusters of all shapes and sizes or identify highly irregular sets that overestimate the true extent of the cluster. We introduce a graph-theoretical method for detecting arbitrarily shaped clusters based on the Euclidean minimum spanning tree of cartogram-transformed case locations, which overcomes these shortcomings. The method is illustrated by using several clusters, including historical data sets from West Nile virus and inhalational anthrax outbreaks. Sensitivity and accuracy comparisons with the prevailing cluster detection method show that the method performs similarly on approximately circular historical clusters and greatly improves detection for noncircular clusters.</jats:p> Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes Proceedings of the National Academy of Sciences
spellingShingle Wieland, Shannon C., Brownstein, John S., Berger, Bonnie, Mandl, Kenneth D., Proceedings of the National Academy of Sciences, Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes, Multidisciplinary
title Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_full Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_fullStr Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_full_unstemmed Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_short Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
title_sort density-equalizing euclidean minimum spanning trees for the detection of all disease cluster shapes
title_unstemmed Density-equalizing Euclidean minimum spanning trees for the detection of all disease cluster shapes
topic Multidisciplinary
url http://dx.doi.org/10.1073/pnas.0609457104