Details
Zusammenfassung: <jats:p>Rotary swaging is an incremental cold forming process that changes beneath the geometry also the microstructure and mechanical properties of the workpiece. Especially a new process design with Eccentric Flat Shaped Dies (EFSD) influences both the kind and amount of stress and plastic strain and consequently the material structure, and hence the material and workpiece properties. Eccentric rotary swaging typically provides a helical material flow. According to the process parameters the microstructure features a typical eddy pattern with a spiral shaped grain orientation. The forming process can be carried out in one or more process steps. In a multistage process, it is possible to change the feed direction and, hence, the material flow helix direction. This approach can be used as a possibility to improve the homogeneity of the workpiece and material properties. In addition, for this aims an intermediate heat treatment in multistage forming operations could be realized. Following the goal of optimizing the final properties, the question arises how these mechanical and thermal treatments affect the material microstructure and the forming properties of the workpiece and how they interact. Experiments were conducted with austenitic stainless steel rods of grade AISI304. The effects of the varied feed direction, feed velocity and heat treatment between the forming operations are discussed.</jats:p>
Umfang: 15
ISSN: 2265-4224
DOI: 10.1051/mfreview/2019010