Eintrag weiter verarbeiten

Synthesis of chiral zirconium-based metal-organic frameworks as solid catalysts in asymmetric carbon-carbon coupling reactions

Gespeichert in:

Personen und Körperschaften: Nguyen, Khoa Dang, Kaskel, Stefan, Janiak, Christoph, Brunner, Eike
Titel: Synthesis of chiral zirconium-based metal-organic frameworks as solid catalysts in asymmetric carbon-carbon coupling reactions
Hochschulschriftenvermerk: Dissertation, Technische Universität Dresden, 2019
Format: E-Book Hochschulschrift
Sprache: Englisch
veröffentlicht:
Online-Ausg.. 2020
Schlagwörter:
Quelle: Qucosa
Details
Zusammenfassung: Comprehensive understanding of chirality has played a crucial role for ensuring safety and efficacy of drug products. In many cases, two optical configurations of a chiral molecule exhibit substantially different physiological behaviour, and thus the preparation of single enantiomers has become as an essential topic in the pharmaceutical industry.1-2 Enantiomerically pure compounds could generally be achieved by separation from racemic mixtures or direct synthesis of enantiopure molecules. Either way, chiral materials which are employed as stationary phase in chiral columns or chiral catalysis, are a basic condition to decide to enantiomeric excess of resulting mixtures. Despite obtaining high enantiomeric purity, the chiral separation of racemic mixtures is considered as an expensive and inefficient approach due to undesired enantiomers, while asymmetric synthesis, which enables dominant formation of the single enantiomers, is an atom-economical method. However, the development of efficient heterogeneous chiral catalysts has been still required further investigations to provide more potential options for asymmetric organic reactions, especially carbon-carbon bond formations, which are key steps in organic synthesis.1-3 In recent years, metal-organic frameworks have emerged as one of the most intriguing solid porous materials. Together with the highly active catalytic centers, wide structural and functional variations, MOFs have been successfully employed as heterogeneous catalysts for a variety of organic transformations.4-5 However, very few achievements relating to MOFs as asymmetric catalysts have been reported to date because of their low thermal and chemical stabilities. Such solid stable frameworks, the Zr-MOFs offers great opportunities for designing novel effective asymmetric catalysts.1, 6-9 This is an interesting, but also challenging topic with many open issues: •How can we introduce effectively enantiopure active sites into Zr-MOFs? •Are there any positive or negative impacts of Zr-nets on the performance of chiral catalytic sites? •If any, is it possible to control these effects during the reaction phase? •How is the recyclability of these chiral Zr-MOFs? Finding answers for these questions are the core of this thesis. In Chapter 3, DUT-67, an 8-connected zirconium and 2,5-thiophenedicarboxylate based MOF, was post synthetically functionalized by L-proline via solvent assisted linker incorporation to obtain a chiral base catalyst. The parent monocarboxylate could be almost completely exchanged by L-proline after 5 days of treatment. The resulting chiral DUT-67, DUT-67-Pro, was demonstrated to be a promising heterogeneous catalyst for the asymmetric Michael addition of cyclohexanone to trans-β-nitrostyrene with excellent yield (up to 96%) and enantioselectivity comparable to that of L-proline in homogeneous reaction (ee approximately 38%). The Zr-MOF could be reused at least 5 times without substantial degradation in crystallinity or catalytic activity. No leaching of catalytically active species into the liquid phase was detected over 5 cycles. A further understanding regarding the role of catalytic active sites, including Zr-clusters and L-proline, in asymmetric aldol addition of cyclohexanone and 4-nitro-benzaldehyde is investigated in Chapter 4 to clarify the predominant formation of syn-products as well as the absence of enantioselectivity in previous catalytic systems. The presence and location of L-proline into DUT-67 was confirmed by Solid-state MAS and DNP NMR data. The chiral DUT-67-Pro catalyst exhibits an excellent catalytic activity at low temperature (298 K) with an unprecedented syn-(S,S)-product selectivity in an asymmetric aldol addition reaction of cyclohexanone to 4-nitrobenzaldehyde (yield = 95%, ee = 96%). Comparative catalytic studies using a molecular Zr6-cluster model compound indicate the Zr6-moiety to be responsible for this inverse diastereoselectivity compared to well-established L-proline organocatalysis and a mechanism is proposed to explain the Zr6-cluster-mediated syn-selectivity. Masking residual acidic active sites in the cluster of the framework was found to be a key prerequisite to achieve the high enantioselectivity. The purely heterogeneous catalytic system based on DUT-67-Pro is highly stable and can be recycled several times. Lastly, a novel chiral diimine Zr-MOF, namely DUT-136, synthesized from one-pot reaction of ZrCl4 with 4-formylbenzoic acid, and (R,R)-1, 2-diphenylethylenediamine as an enantiopure core will be described in Chapter 5. Inspired from the versatile transformation of the C=N double bonds, a variety of post-synthetic methods, including oxidation, reduction, and metalation, was employed to modify DUT-136 for formation of the chiral amide-, amine-, and Ni-DUT-136, respectively. The catalytic behaviour of these post-synthetically modified materials was then evaluated in a wide range of asymmetric organic transformations, including the Friedel Craft alkylation, the Michael addition, the aldol reaction and the Ni-catalyzed C-C coupling. The research on synthesis of chiral Zr-MOFs and their catalytic behavior in this work are expected to provide a better understanding or at least give to other scientists open ideas for further deeper studies regarding this topic in the future.