Eintrag weiter verarbeiten

Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS): model development and case studies

Gespeichert in:

Personen und Körperschaften: Jing, Miao (VerfasserIn), Attinger, Sabine (AkademischeR BetreuerIn), Totsche, Kai Uwe (AkademischeR BetreuerIn), Brenning, Alexander (AkademischeR BetreuerIn), Friedrich-Schiller-Universität Jena (Grad-verleihende Institution)
Titel: Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS): model development and case studies/ von M.Sc. Miao Jing
Hochschulschriftenvermerk: Dissertation, Friedrich-Schiller-Universität Jena, 2019
Format: E-Book Hochschulschrift
Sprache: Englisch, Deutsch
veröffentlicht:
Jena [2019?]
Schlagwörter:
Erscheint auch als: Jing, Miao, 1989 - , Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS), Jena, 2019, xx, 162 Seiten
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Anmerkungen: Zusammenfassungen in deutscher und englischer Sprache
LEADER 08821cam a2201309 4500
001 0-168240627X
003 DE-627
005 20210707140634.0
007 cr uuu---uuuuu
008 191121s2019 gw |||||om 00| ||eng c
016 7 |a 1207273236  |2 DE-101 
024 7 |a urn:nbn:de:gbv:27-dbt-20191121-143743-008  |2 urn 
024 7 |a 10.22032/dbt.40054  |2 doi 
035 |a (DE-627)168240627X 
035 |a (DE-599)KXP168240627X 
035 |a (DE-101)1207273236 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng  |a ger 
044 |c XA-DE-TH 
082 0 |a 551.49  |q DE-101 
082 0 4 |a 550  |q DE-101 
084 |a 38.86  |2 bkl 
084 |a 43.03  |2 bkl 
100 1 |a Jing, Miao  |d 1989-  |e VerfasserIn  |0 (DE-588)1199658553  |0 (DE-627)1681984636  |4 aut 
245 1 0 |a Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS)  |b model development and case studies  |c von M.Sc. Miao Jing 
264 1 |a Jena  |c [2019?] 
300 |a 1 Online-Ressource (182 Seiten)  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Kumulative Dissertation, enthält Zeitschriftenaufsätze 
500 |a Tag der Verteidigung: 11.09.2019 
502 |b Dissertation  |c Friedrich-Schiller-Universität Jena  |d 2019 
520 |a Groundwater is the source of approximately twenty percent of the world’s freshwater supply. It is also one of the most important sources of water for irrigation. However, groundwater has been over-used and polluted in many places in the world. Climate change and saltwater intrusion are threatening groundwater resources. The groundwater system throughout the world is subject to many potential contamination sources, such as storage tanks, abandoned industrial factories, nitrates from agricultural activities, pesticides, and atmospheric contaminants. Meanwhile, numerical models provide a quantitative framework for integrating field information and for characterizing hydrogeologic processes and have been widely used to forecast the results of a proposed action/inaction. In reality, the terrestrial hydrologic cycle is a continuous system. The groundwater flow is intricately and tightly linked with the land surface processes and states (e.g., recharge, evapotranspiration, soil moisture, and overland flow). Historically, the surface hydrologic models and groundwater models have been developed separately due to the distinct characteristics of land surface processes and deep groundwater processes. Generally, the surface hydrologic models have a good predictive capability of flood events but constantly fall short in predicting the low flow. The reason behind this is the absence of explicit groundwater representation. Meanwhile, groundwater models focus on representing slow groundwater flow and transport but always use oversimplified upper boundaries (e.g., empirical estimation of recharge). Therefore, the coupling between the surface hydrologic models and the subsurface hydrogeologic models are urgently needed. This study is devoted to improving the characterization of regional groundwater flow and transport processes through the coupling of the mesoscale Hydrologic Model (mHM) and the hydrogeological model OpenGeoSys (OGS). The proposed mHM-OGS coupled model is applied to assess the regional groundwater resource of a mesoscale catchment in central Germany (Nägelstedt). The mHM-OGS coupled model can reasonably simulate the transient behavior of groundwater levels. It is also a valuable tool in estimating travel time distributions (TTDs) with its capability in explicitly characterizing the subsurface hydraulic heterogeneity and dealing with input and parameter uncertainties. Results of ensemble simulations show that the groundwater TTD in Nägelstedt catchment is strongly dependent on the rate and the spatial pattern of recharge. Meanwhile, the internal hydraulic properties also have a moderate impact on the shape of groundwater TTD. The mHM-OGS coupled model is also a valuable tool in evaluating regional groundwater resources under climate change. An ensemble of climate scenarios are set up to assess the uncertainty in climate projections under 1.5, 2, and 3 C global warming. Simulation results indicate a small increase in groundwater quantity and a moderate decrease in groundwater mean travel time in Nägelstedt catchment. Additionally, a large predictive uncertainty is found in the simulation results, which is mainly introduced from the climate projections. The global warming ultimately influences the regional groundwater quality at the long term through the modification of groundwater travel time distributions. 
546 |a Zusammenfassungen in deutscher und englischer Sprache 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
689 0 0 |D s  |0 (DE-588)4026307-1  |0 (DE-627)104689129  |0 (DE-576)208965998  |a Hydrogeologie  |2 gnd 
689 0 1 |D s  |0 (DE-588)4121396-8  |0 (DE-627)105769789  |0 (DE-576)209542950  |a Grundwasserstrom  |2 gnd 
689 0 2 |D s  |0 (DE-588)4026309-5  |0 (DE-627)106288717  |0 (DE-576)208966013  |a Hydrologie  |2 gnd 
689 0 3 |D s  |0 (DE-588)4172265-6  |0 (DE-627)104755164  |0 (DE-576)209942290  |a Oberflächenwasser  |2 gnd 
689 0 4 |D s  |0 (DE-588)4338132-7  |0 (DE-627)152366105  |0 (DE-576)211384879  |a Numerisches Modell  |2 gnd 
689 0 |5 (DE-627) 
700 1 |a Attinger, Sabine  |e AkademischeR BetreuerIn  |0 (DE-588)120041502  |0 (DE-627)696326787  |0 (DE-576)304827304  |4 dgs 
700 1 |a Totsche, Kai Uwe  |d 1965-  |e AkademischeR BetreuerIn  |0 (DE-588)113227426  |0 (DE-627)691176205  |0 (DE-576)289756197  |4 dgs 
700 1 |a Brenning, Alexander  |d 1975-  |e AkademischeR BetreuerIn  |0 (DE-588)130437638  |0 (DE-627)501474544  |0 (DE-576)298195577  |4 dgs 
710 2 |a Friedrich-Schiller-Universität Jena  |e Grad-verleihende Institution  |0 (DE-588)36164-1  |0 (DE-627)100833012  |0 (DE-576)190344695  |4 dgg 
751 |a Jena  |0 (DE-588)4028557-1  |0 (DE-627)104814411  |0 (DE-576)208977872  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Jing, Miao, 1989 -   |t Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS)  |d Jena, 2019  |h xx, 162 Seiten  |w (DE-627)1682404161 
856 4 0 |u https://doi.org/10.22032/dbt.40054  |x Langzeitarchivierung  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20191121-143743-008  |v 2020-04-02  |x Resolving-System 
856 4 0 |u https://d-nb.info/1207273236/34  |v 2020-04-02  |x Langzeitarchivierung Nationalbibliothek 
856 4 0 |u https://www.db-thueringen.de/receive/dbt_mods_00040054  |v 2020-04-02  |x Verlag  |z kostenfrei 
912 |a GBV-ODiss 
936 b k |a 38.86  |j Grundwasser  |0 (DE-627)106406957 
936 b k |a 43.03  |j Methoden der Umweltforschung und des Umweltschutzes  |0 (DE-627)106416952 
951 |a BO 
856 4 0 |u https://doi.org/10.22032/dbt.40054  |9 LFER 
852 |a LFER  |z 2019-12-05T00:00:00Z 
970 |c OD 
971 |c EBOOK 
972 |c EBOOK 
973 |c EB 
935 |a lfer 
900 |a Jing, M. 
900 |a Miao Jing 
900 |a Totsche, K. 
900 |a Totsche, K. U. 
900 |a Totsche, Kai U. 
900 |a Attinger, S. 
910 |a Universität Jena 
910 |a Friedrich-Schiller-Universität Jena 
910 |a Rektor 
910 |a FSU 
910 |a FSU Jena 
910 |a Schiller-Universität Jena 
910 |a Alma Mater Jenensis 
910 |a Jenskij Gosudarstvennyj Universitet Imeni Fridricha Šillera 
910 |a Gosudarstvennyj Universitet Imeni Fridricha Šillera 
910 |a Jena 
910 |a Universitet Imeni Fridricha Šillera 
910 |a Friedrich Schiller University 
910 |a Schiller University 
910 |a Universitas Litterarum Jenensis 
910 |a Universitas Litterarum Ienensis 
910 |a University of Jena 
910 |a University 
910 |a Universidad Friedrich Schiller 
910 |a Thüringische Landesuniversität Jena 
950 |a Modellrechnung 
950 |a Numerisches Verfahren 
950 |a Mathematisches Modell 
950 |a Grundwasserströmung 
950 |a Grundwasserfluss 
950 |a Grundwasser 
950 |a Gewässerkunde 
950 |a Hydrographie 
950 |a Hydrografie 
950 |a Gewässerforschung 
950 |a Wasserforschung 
950 |a Geowissenschaften 
950 |a Hydrologe 
950 |a Hydrologin 
950 |a Гидрология 
950 |a Geohydrologie 
950 |a Geohydraulik 
950 |a Angewandte Geologie 
950 |a Geologie 
950 |a Гидрогеология 
950 |a Oberflächengewässer 
950 |a Sturzwasserbewässerung 
951 |b XB-CN 
980 |a 168240627X  |b 0  |k 168240627X  |u 2023-06-28  |c lfer 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Regional+groundwater+representation+by+coupling+the+mesoscale+Hydrologic+Model+%28mHM%29+with+OpenGeoSys+%28OGS%29%3A+model+development+and+case+studies&rft.date=%5B2019%3F%5D&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Jing%2C+Miao&rft.pub=&rft.format=eBook&rft.language=English
SOLR
_version_ 1769923056157851648
access_facet Electronic Resources
author Jing, Miao
author2 Attinger, Sabine, Totsche, Kai Uwe, Brenning, Alexander
author2_role dgs, dgs, dgs
author2_variant s a sa, k u t ku kut, a b ab
author_corporate Friedrich-Schiller-Universität Jena
author_corporate_role dgg
author_facet Jing, Miao, Attinger, Sabine, Totsche, Kai Uwe, Brenning, Alexander, Friedrich-Schiller-Universität Jena
author_role aut
author_sort Jing, Miao 1989-
author_variant m j mj
callnumber-sort
collection GBV-ODiss, lfer
contents Groundwater is the source of approximately twenty percent of the world’s freshwater supply. It is also one of the most important sources of water for irrigation. However, groundwater has been over-used and polluted in many places in the world. Climate change and saltwater intrusion are threatening groundwater resources. The groundwater system throughout the world is subject to many potential contamination sources, such as storage tanks, abandoned industrial factories, nitrates from agricultural activities, pesticides, and atmospheric contaminants. Meanwhile, numerical models provide a quantitative framework for integrating field information and for characterizing hydrogeologic processes and have been widely used to forecast the results of a proposed action/inaction. In reality, the terrestrial hydrologic cycle is a continuous system. The groundwater flow is intricately and tightly linked with the land surface processes and states (e.g., recharge, evapotranspiration, soil moisture, and overland flow). Historically, the surface hydrologic models and groundwater models have been developed separately due to the distinct characteristics of land surface processes and deep groundwater processes. Generally, the surface hydrologic models have a good predictive capability of flood events but constantly fall short in predicting the low flow. The reason behind this is the absence of explicit groundwater representation. Meanwhile, groundwater models focus on representing slow groundwater flow and transport but always use oversimplified upper boundaries (e.g., empirical estimation of recharge). Therefore, the coupling between the surface hydrologic models and the subsurface hydrogeologic models are urgently needed. This study is devoted to improving the characterization of regional groundwater flow and transport processes through the coupling of the mesoscale Hydrologic Model (mHM) and the hydrogeological model OpenGeoSys (OGS). The proposed mHM-OGS coupled model is applied to assess the regional groundwater resource of a mesoscale catchment in central Germany (Nägelstedt). The mHM-OGS coupled model can reasonably simulate the transient behavior of groundwater levels. It is also a valuable tool in estimating travel time distributions (TTDs) with its capability in explicitly characterizing the subsurface hydraulic heterogeneity and dealing with input and parameter uncertainties. Results of ensemble simulations show that the groundwater TTD in Nägelstedt catchment is strongly dependent on the rate and the spatial pattern of recharge. Meanwhile, the internal hydraulic properties also have a moderate impact on the shape of groundwater TTD. The mHM-OGS coupled model is also a valuable tool in evaluating regional groundwater resources under climate change. An ensemble of climate scenarios are set up to assess the uncertainty in climate projections under 1.5, 2, and 3 C global warming. Simulation results indicate a small increase in groundwater quantity and a moderate decrease in groundwater mean travel time in Nägelstedt catchment. Additionally, a large predictive uncertainty is found in the simulation results, which is mainly introduced from the climate projections. The global warming ultimately influences the regional groundwater quality at the long term through the modification of groundwater travel time distributions.
ctrlnum (DE-627)168240627X, (DE-599)KXP168240627X, (DE-101)1207273236
dewey-full 551.49, 550
dewey-hundreds 500 - Science
dewey-ones 551 - Geology, hydrology & meteorology, 550 - Earth sciences
dewey-raw 551.49, 550
dewey-search 551.49, 550
dewey-sort 3551.49
dewey-tens 550 - Earth sciences & geology
doi_str_mv 10.22032/dbt.40054
facet_912a GBV-ODiss
facet_avail Online, Free
facet_local_del330 Hydrogeologie, Grundwasserstrom, Hydrologie, Oberflächenwasser, Numerisches Modell
finc_class_facet Geographie, Geologie und Paläontologie
fincclass_txtF_mv science-geology, engineering-water, science-hydrology, science-environmental
footnote Kumulative Dissertation, enthält Zeitschriftenaufsätze, Tag der Verteidigung: 11.09.2019
format eBook, Thesis
format_access_txtF_mv Thesis
format_de105 Ebook
format_de14 Book, E-Book
format_de15 Book, E-Book
format_del152 Buch
format_detail_txtF_mv text-online-monograph-independent-thesis
format_dezi4 e-Book
format_finc Book, E-Book, Thesis
format_legacy ElectronicBook
format_legacy_nrw Book, E-Book
format_nrw Book, E-Book
format_strict_txtF_mv E-Thesis
genre Hochschulschrift (DE-588)4113937-9 (DE-627)105825778 (DE-576)209480580 gnd-content
genre_facet Hochschulschrift
geogr_code not assigned
geogr_code_person China
id 0-168240627X
illustrated Not Illustrated
imprint Jena, [2019?]
imprint_str_mv Jena, [2019?]
institution DE-D117, DE-105, LFER, DE-Ch1, DE-15, DE-14, DE-Zwi2
is_hierarchy_id
is_hierarchy_title
isil_str_mv LFER
kxp_id_str 168240627X
language English, German
last_indexed 2023-06-28T05:29:18.876Z
local_heading_facet_dezwi2 Hydrogeologie, Grundwasserstrom, Hydrologie, Oberflächenwasser, Numerisches Modell
marc024a_ct_mv urn:nbn:de:gbv:27-dbt-20191121-143743-008, 10.22032/dbt.40054
match_str jing2019regionalgroundwaterrepresentationbycouplingthemesoscalehydrologicmodelmhmwithopengeosysogsmodeldevelopmentandcasestudies
mega_collection Verbunddaten SWB, Lizenzfreie Online-Ressourcen
misc_de105 EBOOK
names_id_str_mv (DE-588)1199658553, (DE-627)1681984636, (DE-588)120041502, (DE-627)696326787, (DE-576)304827304, (DE-588)113227426, (DE-627)691176205, (DE-576)289756197, (DE-588)130437638, (DE-627)501474544, (DE-576)298195577, (DE-588)36164-1, (DE-627)100833012, (DE-576)190344695
physical 1 Online-Ressource (182 Seiten); Illustrationen, Diagramme
publishDate [2019?]
publishDateSort 2019
publishPlace Jena
publisher
record_format marcfinc
record_id 168240627X
recordtype marcfinc
rvk_facet No subject assigned
source_id 0
spelling Jing, Miao 1989- VerfasserIn (DE-588)1199658553 (DE-627)1681984636 aut, Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) model development and case studies von M.Sc. Miao Jing, Jena [2019?], 1 Online-Ressource (182 Seiten) Illustrationen, Diagramme, Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, Kumulative Dissertation, enthält Zeitschriftenaufsätze, Tag der Verteidigung: 11.09.2019, Dissertation Friedrich-Schiller-Universität Jena 2019, Groundwater is the source of approximately twenty percent of the world’s freshwater supply. It is also one of the most important sources of water for irrigation. However, groundwater has been over-used and polluted in many places in the world. Climate change and saltwater intrusion are threatening groundwater resources. The groundwater system throughout the world is subject to many potential contamination sources, such as storage tanks, abandoned industrial factories, nitrates from agricultural activities, pesticides, and atmospheric contaminants. Meanwhile, numerical models provide a quantitative framework for integrating field information and for characterizing hydrogeologic processes and have been widely used to forecast the results of a proposed action/inaction. In reality, the terrestrial hydrologic cycle is a continuous system. The groundwater flow is intricately and tightly linked with the land surface processes and states (e.g., recharge, evapotranspiration, soil moisture, and overland flow). Historically, the surface hydrologic models and groundwater models have been developed separately due to the distinct characteristics of land surface processes and deep groundwater processes. Generally, the surface hydrologic models have a good predictive capability of flood events but constantly fall short in predicting the low flow. The reason behind this is the absence of explicit groundwater representation. Meanwhile, groundwater models focus on representing slow groundwater flow and transport but always use oversimplified upper boundaries (e.g., empirical estimation of recharge). Therefore, the coupling between the surface hydrologic models and the subsurface hydrogeologic models are urgently needed. This study is devoted to improving the characterization of regional groundwater flow and transport processes through the coupling of the mesoscale Hydrologic Model (mHM) and the hydrogeological model OpenGeoSys (OGS). The proposed mHM-OGS coupled model is applied to assess the regional groundwater resource of a mesoscale catchment in central Germany (Nägelstedt). The mHM-OGS coupled model can reasonably simulate the transient behavior of groundwater levels. It is also a valuable tool in estimating travel time distributions (TTDs) with its capability in explicitly characterizing the subsurface hydraulic heterogeneity and dealing with input and parameter uncertainties. Results of ensemble simulations show that the groundwater TTD in Nägelstedt catchment is strongly dependent on the rate and the spatial pattern of recharge. Meanwhile, the internal hydraulic properties also have a moderate impact on the shape of groundwater TTD. The mHM-OGS coupled model is also a valuable tool in evaluating regional groundwater resources under climate change. An ensemble of climate scenarios are set up to assess the uncertainty in climate projections under 1.5, 2, and 3 C global warming. Simulation results indicate a small increase in groundwater quantity and a moderate decrease in groundwater mean travel time in Nägelstedt catchment. Additionally, a large predictive uncertainty is found in the simulation results, which is mainly introduced from the climate projections. The global warming ultimately influences the regional groundwater quality at the long term through the modification of groundwater travel time distributions., Zusammenfassungen in deutscher und englischer Sprache, Hochschulschrift (DE-588)4113937-9 (DE-627)105825778 (DE-576)209480580 gnd-content, s (DE-588)4026307-1 (DE-627)104689129 (DE-576)208965998 Hydrogeologie gnd, s (DE-588)4121396-8 (DE-627)105769789 (DE-576)209542950 Grundwasserstrom gnd, s (DE-588)4026309-5 (DE-627)106288717 (DE-576)208966013 Hydrologie gnd, s (DE-588)4172265-6 (DE-627)104755164 (DE-576)209942290 Oberflächenwasser gnd, s (DE-588)4338132-7 (DE-627)152366105 (DE-576)211384879 Numerisches Modell gnd, (DE-627), Attinger, Sabine AkademischeR BetreuerIn (DE-588)120041502 (DE-627)696326787 (DE-576)304827304 dgs, Totsche, Kai Uwe 1965- AkademischeR BetreuerIn (DE-588)113227426 (DE-627)691176205 (DE-576)289756197 dgs, Brenning, Alexander 1975- AkademischeR BetreuerIn (DE-588)130437638 (DE-627)501474544 (DE-576)298195577 dgs, Friedrich-Schiller-Universität Jena Grad-verleihende Institution (DE-588)36164-1 (DE-627)100833012 (DE-576)190344695 dgg, Jena (DE-588)4028557-1 (DE-627)104814411 (DE-576)208977872 uvp, Erscheint auch als Druck-Ausgabe Jing, Miao, 1989 - Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) Jena, 2019 xx, 162 Seiten (DE-627)1682404161, https://doi.org/10.22032/dbt.40054 Langzeitarchivierung Resolving-System kostenfrei, https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20191121-143743-008 2020-04-02 Resolving-System, https://d-nb.info/1207273236/34 2020-04-02 Langzeitarchivierung Nationalbibliothek, https://www.db-thueringen.de/receive/dbt_mods_00040054 2020-04-02 Verlag kostenfrei, https://doi.org/10.22032/dbt.40054 LFER, LFER 2019-12-05T00:00:00Z
spellingShingle Jing, Miao, Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS): model development and case studies, Groundwater is the source of approximately twenty percent of the world’s freshwater supply. It is also one of the most important sources of water for irrigation. However, groundwater has been over-used and polluted in many places in the world. Climate change and saltwater intrusion are threatening groundwater resources. The groundwater system throughout the world is subject to many potential contamination sources, such as storage tanks, abandoned industrial factories, nitrates from agricultural activities, pesticides, and atmospheric contaminants. Meanwhile, numerical models provide a quantitative framework for integrating field information and for characterizing hydrogeologic processes and have been widely used to forecast the results of a proposed action/inaction. In reality, the terrestrial hydrologic cycle is a continuous system. The groundwater flow is intricately and tightly linked with the land surface processes and states (e.g., recharge, evapotranspiration, soil moisture, and overland flow). Historically, the surface hydrologic models and groundwater models have been developed separately due to the distinct characteristics of land surface processes and deep groundwater processes. Generally, the surface hydrologic models have a good predictive capability of flood events but constantly fall short in predicting the low flow. The reason behind this is the absence of explicit groundwater representation. Meanwhile, groundwater models focus on representing slow groundwater flow and transport but always use oversimplified upper boundaries (e.g., empirical estimation of recharge). Therefore, the coupling between the surface hydrologic models and the subsurface hydrogeologic models are urgently needed. This study is devoted to improving the characterization of regional groundwater flow and transport processes through the coupling of the mesoscale Hydrologic Model (mHM) and the hydrogeological model OpenGeoSys (OGS). The proposed mHM-OGS coupled model is applied to assess the regional groundwater resource of a mesoscale catchment in central Germany (Nägelstedt). The mHM-OGS coupled model can reasonably simulate the transient behavior of groundwater levels. It is also a valuable tool in estimating travel time distributions (TTDs) with its capability in explicitly characterizing the subsurface hydraulic heterogeneity and dealing with input and parameter uncertainties. Results of ensemble simulations show that the groundwater TTD in Nägelstedt catchment is strongly dependent on the rate and the spatial pattern of recharge. Meanwhile, the internal hydraulic properties also have a moderate impact on the shape of groundwater TTD. The mHM-OGS coupled model is also a valuable tool in evaluating regional groundwater resources under climate change. An ensemble of climate scenarios are set up to assess the uncertainty in climate projections under 1.5, 2, and 3 C global warming. Simulation results indicate a small increase in groundwater quantity and a moderate decrease in groundwater mean travel time in Nägelstedt catchment. Additionally, a large predictive uncertainty is found in the simulation results, which is mainly introduced from the climate projections. The global warming ultimately influences the regional groundwater quality at the long term through the modification of groundwater travel time distributions., Hochschulschrift, Hydrogeologie, Grundwasserstrom, Hydrologie, Oberflächenwasser, Numerisches Modell
title Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS): model development and case studies
title_auth Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) model development and case studies
title_full Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) model development and case studies von M.Sc. Miao Jing
title_fullStr Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) model development and case studies von M.Sc. Miao Jing
title_full_unstemmed Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS) model development and case studies von M.Sc. Miao Jing
title_short Regional groundwater representation by coupling the mesoscale Hydrologic Model (mHM) with OpenGeoSys (OGS)
title_sort regional groundwater representation by coupling the mesoscale hydrologic model mhm with opengeosys ogs model development and case studies
title_sub model development and case studies
topic Hochschulschrift, Hydrogeologie, Grundwasserstrom, Hydrologie, Oberflächenwasser, Numerisches Modell
topic_facet Hochschulschrift, Hydrogeologie, Grundwasserstrom, Hydrologie, Oberflächenwasser, Numerisches Modell
url https://doi.org/10.22032/dbt.40054, https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20191121-143743-008, https://d-nb.info/1207273236/34, https://www.db-thueringen.de/receive/dbt_mods_00040054
urn urn:nbn:de:gbv:27-dbt-20191121-143743-008