Eintrag weiter verarbeiten

Synthesis and thermal stability of ZrO2SiO2 core-shell submicron particles

Gespeichert in:

Veröffentlicht in: RSC Advances 9(2019), 46, Seite 26902-26914
Personen und Körperschaften: Finsel, Maik (VerfasserIn), Hemme, Maria (VerfasserIn), Döring, Sebastian (VerfasserIn), Rüter, Jil S. V. (VerfasserIn), Dahl, Gregor Thomas (VerfasserIn), Ritter, Martin (VerfasserIn), Kornowski, Andreas (VerfasserIn), Weller, Horst (VerfasserIn), Vossmeyer, Tobias (VerfasserIn), Technische Universität Hamburg (Sonstige), Technische Universität Hamburg Betriebseinheit Elektronenmikroskopie BEEM (Sonstige), SFB 986 Maßgeschneiderte Multiskalige Materialsysteme M3 (Sonstige)
Titel: Synthesis and thermal stability of ZrO2SiO2 core-shell submicron particles/ Maik Finsel, Maria Hemme, Sebastian Döring, Jil S. V. Rüter, Gregor T. Dahl, Tobias Krekeler, Andreas Kornowski, Martin Ritter, Horst Weller and Tobias Vossmeyer
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2019
Gesamtaufnahme: Royal Society of Chemistry: RSC Advances, 9(2019), 46, Seite 26902-26914
, volume:9
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: ZrO2@SiO2 core-shell submicron particles are promising candidates for the development of advanced optical materials. Here, submicron zirconia particles were synthesized using a modified sol-gel method and pre-calcined at 400 °C. Silica shells were grown on these particles (average size: ∼270 nm) with well-defined thicknesses (26 to 61 nm) using a seeded-growth Stöber approach. To study the thermal stability of bare ZrO2 cores and ZrO2@SiO2 core-shell particles they were calcined at 450 to 1200 °C. After heat treatments, the particles were characterized by SEM, TEM, STEM, cross-sectional EDX mapping, and XRD. The non-encapsulated, bare ZrO2 particles predominantly transitioned to the tetragonal phase after pre-calcination at 400 °C. Increasing the temperature to 600 °C transformed them to monoclinic. Finally, grain coarsening destroyed the spheroidal particle shape after heating to 800 °C. In striking contrast, SiO2-encapsulation significantly inhibited grain growth and the t → m transition progressed considerably only after heating to 1000 °C, whereupon the particle shape, with a smooth silica shell, remained stable. Particle disintegration was observed after heating to 1200 °C. Thus, ZrO2@SiO2 core-shell particles are suited for high-temperature applications up to ∼1000 °C. Different mechanisms are considered to explain the markedly enhanced stability of ZrO2@SiO2 core-shell particles.
Beschreibung: Sonstige Körperschaft: Technische Universität Hamburg
Sonstige Körperschaft: Technische Universität Hamburg, Betriebseinheit Elektronenmikroskopie BEEM
Sonstige Körperschaft: Technische Universität Hamburg, SFB 986 Maßgeschneiderte Multiskalige Materialsysteme M3
Umfang: Illustrationen, Diagramme
ISSN: 2046-2069
DOI: 10.15480/882.2424