Eintrag weiter verarbeiten

Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables

Gespeichert in:

Veröffentlicht in: Energy procedia 155(2018), Seite 412-430
Personen und Körperschaften: Bode, Carsten (VerfasserIn), Schmitz, Gerhard (VerfasserIn), Technische Universität Hamburg (Sonstige, Sonstige Körperschaft, 4oth), Technische Universität Hamburg Institut für Technische Thermodynamik (Sonstige, Sonstige Körperschaft, 4othf)
Titel: Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables/ Carsten Bode, Gerhard Schmitz
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2018
Gesamtaufnahme: : Energy procedia, 155(2018), Seite 412-430
, volume:155
Schlagwörter:
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
LEADER 05667caa a2200829 4500
001 0-1067687386
003 DE-627
005 20190729230346.0
007 cr uuu---uuuuu
008 190312s2018 xx |||||o 00| ||eng c
024 7 |a urn:nbn:de:gbv:830-882.027677  |2 urn 
024 7 |a 10.1016/j.egypro.2018.11.037  |2 doi 
024 7 |a 10.15480/882.2087  |2 doi 
024 7 |a 11420/2091  |2 hdl 
035 |a (DE-627)1067687386 
035 |a (DE-599)GBV1067687386 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
082 0 |a 620: Ingenieurwissenschaften 
082 0 4 |a 620 
100 1 |a Bode, Carsten  |e VerfasserIn  |0 (DE-588)1179852834  |0 (DE-627)1067533508  |0 (DE-576)518388506  |4 aut 
245 1 0 |a Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables  |c Carsten Bode, Gerhard Schmitz 
264 1 |c 2018 
300 |b Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a For the successful transition to a renewable energy source powered society, coupling of different energy sectors is inevitable. The extreme case of a future German energy system consisting of power, heat and gas consumers supplied with 100% renewables is analyzed here. To find the most cost-effective system configuration, different combinations of storage and conversion technologies are compared by performing dynamic simulations and evaluating the average costs over the period of one year. Renewable power production is modeled by using actual power-generation curves and extrapolating the installed power for each technology according to the German energy system framework. Final energy curves for power, heat and gas demand are created as a result of the study. The gas demand only arises from industries using hydrocarbons as a product in processes and for high temperature process heat. The components of the energy system, e.g. storage and conversion technologies are modeled using the equation-based open-source TransiEnt Library based on Modelica®. To obtain the boundaries of the solution scope, the comparison is started by analyzing homogeneous scenarios, e.g. All-Electric or All-Gas with Power-to-Gas with reconversion to power and heat. To find the optimal configuration within this scope, different combinations of power (adiabatic compressed air energy storage (A-CAES), lithium-ion battery, pumped hydro storage), heat storage (hot water storage) and gas storage (underground storage) technologies as well as conversion technologies, i.e. Power-to- Gas (electrolyzer with methanation), Power-to-Heat (electric heat pump, electric boiler), Gas-to-Heat (gas boiler, gas heat pump), and Gas-to-Power (gas turbine, combined cycle gas turbine) are simulated. The results show that a homogeneous energy system configuration where all services are supplied by either power or gas are technically possible but not economic. Due to the limited technical potential of renewables, ecological feasibility of All-Gas systems is limited. A combination of Power-to-Gas with combined cycle gas turbines, electric heat pumps, a lithium-ion battery and pumped hydro storage is the option with the lowest cost. Using an A-CAES instead of the battery or adding an A-CAES to the battery does not lower the cost. 
650 4 |a Coupled Energy System 
650 4 |a Dynamic Simulation 
650 4 |a 100 % Renewables 
650 4 |a Cost Optimization 
700 1 |a Schmitz, Gerhard  |d 1955-  |e VerfasserIn  |0 (DE-588)14162552X  |0 (DE-627)630395063  |0 (DE-576)324447833  |4 aut 
710 2 |a Technische Universität Hamburg  |e Sonstige Körperschaft  |e 4oth  |0 (DE-588)1112763473  |0 (DE-627)866918418  |0 (DE-576)476770564  |4 oth 
710 2 |a Technische Universität Hamburg  |b Institut für Technische Thermodynamik  |e Sonstige Körperschaft  |e 4othf  |0 (DE-588)1126767204  |0 (DE-627)881359149  |0 (DE-576)484783777  |4 oth 
773 0 8 |i Enthalten in  |t Energy procedia  |d Amsterdam [u.a.] : Elsevier, 2009  |g 155(2018), Seite 412-430  |h Online-Ressource  |w (DE-627)598096337  |w (DE-600)2490671-2  |w (DE-576)306838575  |x 1876-6102 
773 1 8 |g volume:155  |g year:2018  |g pages:412-430 
856 4 0 |u https://doi.org/10.1016/j.egypro.2018.11.037  |x Resolving-System  |3 Volltext 
856 4 0 |u http://hdl.handle.net/11420/2091  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:gbv:830-882.027677  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.15480/882.2087  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |i DSpace 
936 u w |d 155  |j 2018  |h 412-430 
951 |a AR 
856 4 0 |u http://hdl.handle.net/11420/2091  |9 LFER 
852 |a LFER  |z 2019-05-07T00:00:00Z 
970 |c OD 
971 |c EBOOK 
972 |c EBOOK 
973 |c Aufsatz 
935 |a lfer 
900 |a Schmitz, G. 
910 |a Hamburg University of Technology 
910 |a Technical University 
910 |a Hamburg 
910 |a Université de Technologie de Hambourg 
910 |a TU Hamburg 
910 |a TUHH 
910 |a University of Technology 
910 |a Technische Universität Hamburg-Harburg 
910 |a Institut für Technische Thermodynamik 
910 |a Technische Universität Hamburg 
910 |a Technische Thermodynamik M-21 
910 |a Engineering Thermodynamics M-21 
910 |a Institut M-21 
910 |a Institute of Engineering Thermodynamics 
910 |a Institute for Engineering Thermodynamics 
910 |a Studiendekanat Maschinenbau 
910 |a TT 
910 |a Institut für Thermofluiddynamik 
951 |b XA-DE 
980 |a 1067687386  |b 0  |k 1067687386  |c lfer 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Dynamic+simulation+and+comparison+of+different+configurations+for+a+coupled+energy+system+with+100%25+renewables&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Bode%2C+Carsten&rft.pub=&rft.format=Journal&rft.language=English&rft.issn=1876-6102
SOLR
_version_ 1785967033311035392
access_facet Electronic Resources
author Bode, Carsten, Schmitz, Gerhard
author_corporate Technische Universität Hamburg, Technische Universität Hamburg, Technische Universität Hamburg, Technische Universität Hamburg Institut für Technische Thermodynamik, Technische Universität Hamburg Institut für Technische Thermodynamik, Technische Universität Hamburg Institut für Technische Thermodynamik
author_corporate_role oth, Sonstige Körperschaft, 4oth, oth, Sonstige Körperschaft, 4othf
author_facet Bode, Carsten, Schmitz, Gerhard, Technische Universität Hamburg, Technische Universität Hamburg, Technische Universität Hamburg, Technische Universität Hamburg Institut für Technische Thermodynamik, Technische Universität Hamburg Institut für Technische Thermodynamik, Technische Universität Hamburg Institut für Technische Thermodynamik
author_role aut, aut
author_sort Bode, Carsten
author_variant c b cb, g s gs
callnumber-sort
collection lfer
container_reference 155(2018), Seite 412-430
container_title Energy procedia
contents For the successful transition to a renewable energy source powered society, coupling of different energy sectors is inevitable. The extreme case of a future German energy system consisting of power, heat and gas consumers supplied with 100% renewables is analyzed here. To find the most cost-effective system configuration, different combinations of storage and conversion technologies are compared by performing dynamic simulations and evaluating the average costs over the period of one year. Renewable power production is modeled by using actual power-generation curves and extrapolating the installed power for each technology according to the German energy system framework. Final energy curves for power, heat and gas demand are created as a result of the study. The gas demand only arises from industries using hydrocarbons as a product in processes and for high temperature process heat. The components of the energy system, e.g. storage and conversion technologies are modeled using the equation-based open-source TransiEnt Library based on Modelica®. To obtain the boundaries of the solution scope, the comparison is started by analyzing homogeneous scenarios, e.g. All-Electric or All-Gas with Power-to-Gas with reconversion to power and heat. To find the optimal configuration within this scope, different combinations of power (adiabatic compressed air energy storage (A-CAES), lithium-ion battery, pumped hydro storage), heat storage (hot water storage) and gas storage (underground storage) technologies as well as conversion technologies, i.e. Power-to- Gas (electrolyzer with methanation), Power-to-Heat (electric heat pump, electric boiler), Gas-to-Heat (gas boiler, gas heat pump), and Gas-to-Power (gas turbine, combined cycle gas turbine) are simulated. The results show that a homogeneous energy system configuration where all services are supplied by either power or gas are technically possible but not economic. Due to the limited technical potential of renewables, ecological feasibility of All-Gas systems is limited. A combination of Power-to-Gas with combined cycle gas turbines, electric heat pumps, a lithium-ion battery and pumped hydro storage is the option with the lowest cost. Using an A-CAES instead of the battery or adding an A-CAES to the battery does not lower the cost.
ctrlnum (DE-627)1067687386, (DE-599)GBV1067687386
dewey-full 620:INGENIEURWISSENSCHAFTEN, 620
dewey-hundreds 600 - Technology
dewey-ones 620 - Engineering & allied operations
dewey-raw 620: Ingenieurwissenschaften, 620
dewey-search 620: Ingenieurwissenschaften, 620
dewey-sort 3620 INGENIEURWISSENSCHAFTEN
dewey-tens 620 - Engineering
doi_str_mv 10.1016/j.egypro.2018.11.037, 10.15480/882.2087
facet_avail Online, Free
finc_class_facet Technik
fincclass_txtF_mv engineering-process, technology
format ElectronicBookComponentPart
format_access_txtF_mv Article, E-Article
format_de105 Ebook
format_de14 Article, E-Article
format_de15 Article, E-Article
format_del152 Buch
format_detail_txtF_mv text-online-monograph-child
format_dezi4 e-Book
format_finc Article, E-Article
format_legacy ElectronicBookPart
format_strict_txtF_mv E-Article
geogr_code not assigned
geogr_code_person Germany
hierarchy_parent_id 0-598096337
hierarchy_parent_title Energy procedia
hierarchy_sequence 155(2018), Seite 412-430
hierarchy_top_id 0-598096337
hierarchy_top_title Energy procedia
id 0-1067687386
illustrated Not Illustrated
imprint 2018
imprint_str_mv 2018
institution DE-D117, DE-105, LFER, DE-Ch1, DE-15, DE-14, DE-Zwi2
is_hierarchy_id 0-1067687386
is_hierarchy_title Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables
issn 1876-6102
kxp_id_str 1067687386
language English
last_indexed 2023-12-22T07:41:29.136Z
local_heading_facet_dezwi2 Coupled Energy System, Dynamic Simulation, 100 % Renewables, Cost Optimization
marc024a_ct_mv urn:nbn:de:gbv:830-882.027677, 10.1016/j.egypro.2018.11.037, 10.15480/882.2087, 11420/2091
match_str bode2018dynamicsimulationandcomparisonofdifferentconfigurationsforacoupledenergysystemwith100renewables
mega_collection Verbunddaten SWB, Lizenzfreie Online-Ressourcen
misc_de105 EBOOK
multipart_link 306838575
multipart_part (306838575)155(2018), Seite 412-430
names_id_str_mv (DE-588)1179852834, (DE-627)1067533508, (DE-576)518388506, (DE-588)14162552X, (DE-627)630395063, (DE-576)324447833, (DE-588)1112763473, (DE-627)866918418, (DE-576)476770564, (DE-588)1126767204, (DE-627)881359149, (DE-576)484783777
physical Diagramme
publishDate 2018
publishDateSort 2018
publishPlace
publisher
record_format marcfinc
record_id 1067687386
recordtype marcfinc
rvk_facet No subject assigned
source_id 0
spelling Bode, Carsten VerfasserIn (DE-588)1179852834 (DE-627)1067533508 (DE-576)518388506 aut, Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables Carsten Bode, Gerhard Schmitz, 2018, Diagramme, Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, For the successful transition to a renewable energy source powered society, coupling of different energy sectors is inevitable. The extreme case of a future German energy system consisting of power, heat and gas consumers supplied with 100% renewables is analyzed here. To find the most cost-effective system configuration, different combinations of storage and conversion technologies are compared by performing dynamic simulations and evaluating the average costs over the period of one year. Renewable power production is modeled by using actual power-generation curves and extrapolating the installed power for each technology according to the German energy system framework. Final energy curves for power, heat and gas demand are created as a result of the study. The gas demand only arises from industries using hydrocarbons as a product in processes and for high temperature process heat. The components of the energy system, e.g. storage and conversion technologies are modeled using the equation-based open-source TransiEnt Library based on Modelica®. To obtain the boundaries of the solution scope, the comparison is started by analyzing homogeneous scenarios, e.g. All-Electric or All-Gas with Power-to-Gas with reconversion to power and heat. To find the optimal configuration within this scope, different combinations of power (adiabatic compressed air energy storage (A-CAES), lithium-ion battery, pumped hydro storage), heat storage (hot water storage) and gas storage (underground storage) technologies as well as conversion technologies, i.e. Power-to- Gas (electrolyzer with methanation), Power-to-Heat (electric heat pump, electric boiler), Gas-to-Heat (gas boiler, gas heat pump), and Gas-to-Power (gas turbine, combined cycle gas turbine) are simulated. The results show that a homogeneous energy system configuration where all services are supplied by either power or gas are technically possible but not economic. Due to the limited technical potential of renewables, ecological feasibility of All-Gas systems is limited. A combination of Power-to-Gas with combined cycle gas turbines, electric heat pumps, a lithium-ion battery and pumped hydro storage is the option with the lowest cost. Using an A-CAES instead of the battery or adding an A-CAES to the battery does not lower the cost., Coupled Energy System, Dynamic Simulation, 100 % Renewables, Cost Optimization, Schmitz, Gerhard 1955- VerfasserIn (DE-588)14162552X (DE-627)630395063 (DE-576)324447833 aut, Technische Universität Hamburg Sonstige Körperschaft 4oth (DE-588)1112763473 (DE-627)866918418 (DE-576)476770564 oth, Technische Universität Hamburg Institut für Technische Thermodynamik Sonstige Körperschaft 4othf (DE-588)1126767204 (DE-627)881359149 (DE-576)484783777 oth, Enthalten in Energy procedia Amsterdam [u.a.] : Elsevier, 2009 155(2018), Seite 412-430 Online-Ressource (DE-627)598096337 (DE-600)2490671-2 (DE-576)306838575 1876-6102, volume:155 year:2018 pages:412-430, https://doi.org/10.1016/j.egypro.2018.11.037 Resolving-System Volltext, http://hdl.handle.net/11420/2091 Resolving-System kostenfrei Volltext, http://nbn-resolving.de/urn:nbn:de:gbv:830-882.027677 Resolving-System kostenfrei Volltext, https://doi.org/10.15480/882.2087 Resolving-System kostenfrei Volltext, http://hdl.handle.net/11420/2091 LFER, LFER 2019-05-07T00:00:00Z
spellingShingle Bode, Carsten, Schmitz, Gerhard, Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables, For the successful transition to a renewable energy source powered society, coupling of different energy sectors is inevitable. The extreme case of a future German energy system consisting of power, heat and gas consumers supplied with 100% renewables is analyzed here. To find the most cost-effective system configuration, different combinations of storage and conversion technologies are compared by performing dynamic simulations and evaluating the average costs over the period of one year. Renewable power production is modeled by using actual power-generation curves and extrapolating the installed power for each technology according to the German energy system framework. Final energy curves for power, heat and gas demand are created as a result of the study. The gas demand only arises from industries using hydrocarbons as a product in processes and for high temperature process heat. The components of the energy system, e.g. storage and conversion technologies are modeled using the equation-based open-source TransiEnt Library based on Modelica®. To obtain the boundaries of the solution scope, the comparison is started by analyzing homogeneous scenarios, e.g. All-Electric or All-Gas with Power-to-Gas with reconversion to power and heat. To find the optimal configuration within this scope, different combinations of power (adiabatic compressed air energy storage (A-CAES), lithium-ion battery, pumped hydro storage), heat storage (hot water storage) and gas storage (underground storage) technologies as well as conversion technologies, i.e. Power-to- Gas (electrolyzer with methanation), Power-to-Heat (electric heat pump, electric boiler), Gas-to-Heat (gas boiler, gas heat pump), and Gas-to-Power (gas turbine, combined cycle gas turbine) are simulated. The results show that a homogeneous energy system configuration where all services are supplied by either power or gas are technically possible but not economic. Due to the limited technical potential of renewables, ecological feasibility of All-Gas systems is limited. A combination of Power-to-Gas with combined cycle gas turbines, electric heat pumps, a lithium-ion battery and pumped hydro storage is the option with the lowest cost. Using an A-CAES instead of the battery or adding an A-CAES to the battery does not lower the cost., Coupled Energy System, Dynamic Simulation, 100 % Renewables, Cost Optimization
title Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables
title_auth Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables
title_full Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables Carsten Bode, Gerhard Schmitz
title_fullStr Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables Carsten Bode, Gerhard Schmitz
title_full_unstemmed Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables Carsten Bode, Gerhard Schmitz
title_in_hierarchy Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables / Carsten Bode, Gerhard Schmitz,
title_short Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables
title_sort dynamic simulation and comparison of different configurations for a coupled energy system with 100 renewables
title_unstemmed Dynamic simulation and comparison of different configurations for a coupled energy system with 100% renewables
topic Coupled Energy System, Dynamic Simulation, 100 % Renewables, Cost Optimization
topic_facet Coupled Energy System, Dynamic Simulation, 100 % Renewables, Cost Optimization
url https://doi.org/10.1016/j.egypro.2018.11.037, http://hdl.handle.net/11420/2091, http://nbn-resolving.de/urn:nbn:de:gbv:830-882.027677, https://doi.org/10.15480/882.2087
urn urn:nbn:de:gbv:830-882.027677