Details
Zusammenfassung: <jats:title>Abstract</jats:title> <jats:p>Lead and lead-containing compounds are considered as toxic substances due to their detrimental effect on the environment. Sn-based soldering systems, like Sn-Cu and Sn-Zn are considered as the most promising candidates to replace the eutectic Sn-Pb solder compared to other solders because of their low melting temperature and favorable properties. Eutectic Sn-0.7 wt.% Cu and near eutectic composition Sn-8 wt.% Zn solders have been considered here for study. For the Sn-Cu system, besides the eutectic Sn-0.7 wt.% Cu composition, Sn-1Cu and Sn-2Cu were studied. Three compositions containing Ag: Sn-2Ag-0.7Cu, Sn-2.5Ag-0.7Cu and Sn-4.5Ag-0.7Cu were also developed. Ag was added to the eutectic Sn-0.7 wt.% Cu composition in order to reduce the melting temperature of the eutectic alloy and to enhance the mechanical properties. For the Sn-Zn system, besides the Sn-8 wt.% Zn near eutectic composition, Sn-8Zn-0.05Ag, Sn-8Zn-0.1Ag and Sn-8Zn-0.2Ag solder alloys were developed. The structure and morphology of the solder alloys were analyzed using a scanning electron microscope (SEM), filed emission scanning electron microscope (FESEM), electron diffraction X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Thermal analysis of the alloys was also done using a differential scanning calorimeter (DSC). Trace additions of Ag have been found to significantly reduce the melting temperature of the Sn-0.7 wt.% Cu and Sn-8 wt.% Zn alloys.</jats:p>
Umfang: 317-330
ISSN: 2083-134X
DOI: 10.1515/msp-2015-0048