Eintrag weiter verarbeiten

Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics

Gespeichert in:

Veröffentlicht in: Journal of aerosol science 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
Personen und Körperschaften: Schlag, Leslie (VerfasserIn), Isaac, Nishchay Angel (VerfasserIn), Nahrstedt, Helene (VerfasserIn), Reiprich, Johannes (VerfasserIn), Ispas, Adriana (VerfasserIn), Stauden, Thomas (VerfasserIn), Pezoldt, Jörg (VerfasserIn), Bund, Andreas (VerfasserIn), Jacobs, Heiko O. (VerfasserIn)
Titel: Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics/ Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2021
Gesamtaufnahme: : Journal of aerosol science, 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
, volume:151
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
LEADER 04470caa a2200625 4500
001 0-1728581338
003 DE-627
005 20230214111831.0
007 cr uuu---uuuuu
008 200902s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jaerosci.2020.105652  |2 doi 
035 |a (DE-627)1728581338 
035 |a (DE-599)KXP1728581338 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Schlag, Leslie  |e VerfasserIn  |0 (DE-588)1257911961  |0 (DE-627)1802595031  |4 aut 
245 1 0 |a Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics  |c Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
506 0 |q DE-Ilm1  |a Open Access  |e Controlled Vocabulary for Access Rights  |u http://purl.org/coar/access_right/c_abf2 
520 |a This communication uncovers missing fundamental elements and an expanded model of gas phase electrodeposition; a relatively new and in large parts unexplored process, which combines particle generation, transport zone and deposition zone in an interacting setup. The process enables selected area deposition of charged nanoparticles that are dispersed and transported by a carrier gas at atmospheric pressure conditions. Two key parameters have been identified: carrier gas flow rate and spark discharge power. Both parameters affect electrical current carried by charged species, nanoparticle mass, particle size and film morphology. In combination, these values enable to provide an estimate of the gas flow dependent Debye length. Together with Langmuir probe measurements of electric potential and field distribution, the transport can be described and understood. First, the transport of the charged species is dominated by the carrier gas flow. In close proximity, the transport is electric field driven. The transition region is not fixed and correlates with the electric potential profile, which is strongly dependent on the deposition rate. Considering the film morphology, the power of the discharge turns out to be the most relevant parameter. Low spark power combined with low gas flow leads to dendritic film growth. In contrast, higher spark power combined with higher gas flow produces compact layers. 
540 |q DE-Ilm1  |a Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International  |f CC BY-NC-ND 4.0  |2 cc  |u https://creativecommons.org/licenses/by-nc-nd/4.0/ 
700 1 |a Isaac, Nishchay Angel  |e VerfasserIn  |0 (DE-588)1257898965  |0 (DE-627)1802583114  |4 aut 
700 1 |a Nahrstedt, Helene  |e VerfasserIn  |4 aut 
700 1 |a Reiprich, Johannes  |e VerfasserIn  |0 (DE-588)1252750307  |0 (DE-627)1794375015  |4 aut 
700 1 |a Ispas, Adriana  |d 1977-  |e VerfasserIn  |0 (DE-588)133699129  |0 (DE-627)551112573  |0 (DE-576)274488647  |4 aut 
700 1 |a Stauden, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Pezoldt, Jörg  |e VerfasserIn  |0 (DE-588)139328793  |0 (DE-627)609624563  |0 (DE-576)311235549  |4 aut 
700 1 |a Bund, Andreas  |d 1969-  |e VerfasserIn  |0 (DE-588)12967477X  |0 (DE-627)477115330  |0 (DE-576)188639063  |4 aut 
700 1 |a Jacobs, Heiko O.  |d 1970-  |e VerfasserIn  |0 (DE-588)103023244X  |0 (DE-627)734945639  |0 (DE-576)378035339  |4 aut 
773 0 8 |i Enthalten in  |t Journal of aerosol science  |d Amsterdam : Elsevier, 1970  |g 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15  |h Online-Ressource  |w (DE-627)306647125  |w (DE-600)1499134-2  |w (DE-576)081953305  |x 1879-1964  |7 nnns 
773 1 8 |g volume:151  |g year:2021  |g month:01  |g elocationid:105652  |g pages:1-15 
856 4 0 |u https://doi.org/10.1016/j.jaerosci.2020.105652  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.db-thueringen.de/receive/dbt_mods_00051038  |x Archivierung  |z kostenfrei  |3 Volltext 
936 u w |d 151  |j 2021  |c 1  |i 105652  |h 1-15 
951 |a AR 
856 4 0 |u https://doi.org/10.1016/j.jaerosci.2020.105652  |9 LFER 
852 |a LFER  |z 2020-10-12T12:19:35Z 
970 |c OD 
971 |c EBOOK 
972 |c EBOOK 
973 |c Aufsatz 
935 |a lfer 
900 |a Isaac, Nishchay A. 
900 |a Isaac, N. A. 
900 |a Pezoldt, Joerg 
900 |a Petzoldt, Jörg 
900 |a Pezoltd, J. 
900 |a Reiprich, Johannes Thomas 
900 |a Jacobs, Heiko Otto 
900 |a Jacobs, Heiko 
951 |b XA-DE 
980 |a 1728581338  |b 0  |k 1728581338  |c lfer 
openURL url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fvufind.svn.sourceforge.net%3Agenerator&rft.title=Nanoparticle+gas+phase+electrodeposition%3A+fundamentals%2C+fluid+dynamics%2C+and+deposition+kinetics&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.creator=Schlag%2C+Leslie&rft.pub=&rft.format=Journal&rft.language=English&rft.issn=1879-1964
SOLR
_version_ 1758093936790863872
access_facet Electronic Resources
access_state_str Open Access
author Schlag, Leslie, Isaac, Nishchay Angel, Nahrstedt, Helene, Reiprich, Johannes, Ispas, Adriana, Stauden, Thomas, Pezoldt, Jörg, Bund, Andreas, Jacobs, Heiko O.
author_facet Schlag, Leslie, Isaac, Nishchay Angel, Nahrstedt, Helene, Reiprich, Johannes, Ispas, Adriana, Stauden, Thomas, Pezoldt, Jörg, Bund, Andreas, Jacobs, Heiko O.
author_role aut, aut, aut, aut, aut, aut, aut, aut, aut
author_sort Schlag, Leslie
author_variant l s ls, n a i na nai, h n hn, j r jr, a i ai, t s ts, j p jp, a b ab, h o j ho hoj
callnumber-sort
collection lfer
container_reference 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
container_title Journal of aerosol science
contents This communication uncovers missing fundamental elements and an expanded model of gas phase electrodeposition; a relatively new and in large parts unexplored process, which combines particle generation, transport zone and deposition zone in an interacting setup. The process enables selected area deposition of charged nanoparticles that are dispersed and transported by a carrier gas at atmospheric pressure conditions. Two key parameters have been identified: carrier gas flow rate and spark discharge power. Both parameters affect electrical current carried by charged species, nanoparticle mass, particle size and film morphology. In combination, these values enable to provide an estimate of the gas flow dependent Debye length. Together with Langmuir probe measurements of electric potential and field distribution, the transport can be described and understood. First, the transport of the charged species is dominated by the carrier gas flow. In close proximity, the transport is electric field driven. The transition region is not fixed and correlates with the electric potential profile, which is strongly dependent on the deposition rate. Considering the film morphology, the power of the discharge turns out to be the most relevant parameter. Low spark power combined with low gas flow leads to dendritic film growth. In contrast, higher spark power combined with higher gas flow produces compact layers.
ctrlnum (DE-627)1728581338, (DE-599)KXP1728581338
doi_str_mv 10.1016/j.jaerosci.2020.105652
facet_avail Online, Free
finc_class_facet not assigned
format ElectronicBookComponentPart
format_access_txtF_mv Article, E-Article
format_de105 Ebook
format_de14 Article, E-Article
format_de15 Article, E-Article
format_del152 Buch
format_detail_txtF_mv text-online-monograph-child
format_dezi4 e-Book
format_finc Article, E-Article
format_legacy ElectronicBookPart
format_strict_txtF_mv E-Article
geogr_code not assigned
geogr_code_person Germany
hierarchy_parent_id 0-306647125
hierarchy_parent_title Journal of aerosol science
hierarchy_sequence 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
hierarchy_top_id 0-306647125
hierarchy_top_title Journal of aerosol science
id 0-1728581338
illustrated Not Illustrated
imprint 2021
imprint_str_mv 2021
institution DE-D117, DE-105, LFER, DE-Ch1, DE-15, DE-14, DE-Zwi2
is_hierarchy_id 0-1728581338
is_hierarchy_title Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics
isil_str_mv LFER
issn 1879-1964
kxp_id_str 1728581338
language English
last_indexed 2023-02-17T15:50:32.821Z
license_str_mv https://creativecommons.org/licenses/by-nc-nd
marc024a_ct_mv 10.1016/j.jaerosci.2020.105652
match_str schlag2021nanoparticlegasphaseelectrodepositionfundamentalsfluiddynamicsanddepositionkinetics
mega_collection Verbunddaten SWB, Lizenzfreie Online-Ressourcen
misc_de105 EBOOK
multipart_link 081953305
multipart_part (081953305)151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
names_id_str_mv (DE-588)1257911961, (DE-627)1802595031, (DE-588)1257898965, (DE-627)1802583114, (DE-588)1252750307, (DE-627)1794375015, (DE-588)133699129, (DE-627)551112573, (DE-576)274488647, (DE-588)139328793, (DE-627)609624563, (DE-576)311235549, (DE-588)12967477X, (DE-627)477115330, (DE-576)188639063, (DE-588)103023244X, (DE-627)734945639, (DE-576)378035339
publishDate 2021
publishDateSort 2021
publishPlace
publisher
record_format marcfinc
record_id 1728581338
recordtype marcfinc
rvk_facet No subject assigned
source_id 0
spelling Schlag, Leslie VerfasserIn (DE-588)1257911961 (DE-627)1802595031 aut, Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs, 2021, Text txt rdacontent, Computermedien c rdamedia, Online-Ressource cr rdacarrier, DE-Ilm1 Open Access Controlled Vocabulary for Access Rights http://purl.org/coar/access_right/c_abf2, This communication uncovers missing fundamental elements and an expanded model of gas phase electrodeposition; a relatively new and in large parts unexplored process, which combines particle generation, transport zone and deposition zone in an interacting setup. The process enables selected area deposition of charged nanoparticles that are dispersed and transported by a carrier gas at atmospheric pressure conditions. Two key parameters have been identified: carrier gas flow rate and spark discharge power. Both parameters affect electrical current carried by charged species, nanoparticle mass, particle size and film morphology. In combination, these values enable to provide an estimate of the gas flow dependent Debye length. Together with Langmuir probe measurements of electric potential and field distribution, the transport can be described and understood. First, the transport of the charged species is dominated by the carrier gas flow. In close proximity, the transport is electric field driven. The transition region is not fixed and correlates with the electric potential profile, which is strongly dependent on the deposition rate. Considering the film morphology, the power of the discharge turns out to be the most relevant parameter. Low spark power combined with low gas flow leads to dendritic film growth. In contrast, higher spark power combined with higher gas flow produces compact layers., DE-Ilm1 Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International CC BY-NC-ND 4.0 cc https://creativecommons.org/licenses/by-nc-nd/4.0/, Isaac, Nishchay Angel VerfasserIn (DE-588)1257898965 (DE-627)1802583114 aut, Nahrstedt, Helene VerfasserIn aut, Reiprich, Johannes VerfasserIn (DE-588)1252750307 (DE-627)1794375015 aut, Ispas, Adriana 1977- VerfasserIn (DE-588)133699129 (DE-627)551112573 (DE-576)274488647 aut, Stauden, Thomas VerfasserIn aut, Pezoldt, Jörg VerfasserIn (DE-588)139328793 (DE-627)609624563 (DE-576)311235549 aut, Bund, Andreas 1969- VerfasserIn (DE-588)12967477X (DE-627)477115330 (DE-576)188639063 aut, Jacobs, Heiko O. 1970- VerfasserIn (DE-588)103023244X (DE-627)734945639 (DE-576)378035339 aut, Enthalten in Journal of aerosol science Amsterdam : Elsevier, 1970 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15 Online-Ressource (DE-627)306647125 (DE-600)1499134-2 (DE-576)081953305 1879-1964 nnns, volume:151 year:2021 month:01 elocationid:105652 pages:1-15, https://doi.org/10.1016/j.jaerosci.2020.105652 Verlag Resolving-System kostenfrei Volltext, https://www.db-thueringen.de/receive/dbt_mods_00051038 Archivierung kostenfrei Volltext, https://doi.org/10.1016/j.jaerosci.2020.105652 LFER, LFER 2020-10-12T12:19:35Z
spellingShingle Schlag, Leslie, Isaac, Nishchay Angel, Nahrstedt, Helene, Reiprich, Johannes, Ispas, Adriana, Stauden, Thomas, Pezoldt, Jörg, Bund, Andreas, Jacobs, Heiko O., Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics, This communication uncovers missing fundamental elements and an expanded model of gas phase electrodeposition; a relatively new and in large parts unexplored process, which combines particle generation, transport zone and deposition zone in an interacting setup. The process enables selected area deposition of charged nanoparticles that are dispersed and transported by a carrier gas at atmospheric pressure conditions. Two key parameters have been identified: carrier gas flow rate and spark discharge power. Both parameters affect electrical current carried by charged species, nanoparticle mass, particle size and film morphology. In combination, these values enable to provide an estimate of the gas flow dependent Debye length. Together with Langmuir probe measurements of electric potential and field distribution, the transport can be described and understood. First, the transport of the charged species is dominated by the carrier gas flow. In close proximity, the transport is electric field driven. The transition region is not fixed and correlates with the electric potential profile, which is strongly dependent on the deposition rate. Considering the film morphology, the power of the discharge turns out to be the most relevant parameter. Low spark power combined with low gas flow leads to dendritic film growth. In contrast, higher spark power combined with higher gas flow produces compact layers.
title Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics
title_auth Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics
title_full Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs
title_fullStr Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs
title_full_unstemmed Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs
title_in_hierarchy Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics / Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs,
title_short Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics
title_sort nanoparticle gas phase electrodeposition fundamentals fluid dynamics and deposition kinetics
url https://doi.org/10.1016/j.jaerosci.2020.105652, https://www.db-thueringen.de/receive/dbt_mods_00051038