Eintrag weiter verarbeiten

Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics

Gespeichert in:

Veröffentlicht in: Journal of aerosol science 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
Personen und Körperschaften: Schlag, Leslie (VerfasserIn), Isaac, Nishchay Angel (VerfasserIn), Nahrstedt, Helene (VerfasserIn), Reiprich, Johannes (VerfasserIn), Ispas, Adriana (VerfasserIn), Stauden, Thomas (VerfasserIn), Pezoldt, Jörg (VerfasserIn), Bund, Andreas (VerfasserIn), Jacobs, Heiko O. (VerfasserIn)
Titel: Nanoparticle gas phase electrodeposition: fundamentals, fluid dynamics, and deposition kinetics/ Leslie Schlag, Nishchay A. Isaac, Helene Nahrstedt, Johannes Reiprich, Adriana Ispas, Thomas Stauden, Jörg Pezoldt, Andreas Bund, Heiko O. Jacobs
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2021
Gesamtaufnahme: : Journal of aerosol science, 151(2021) vom: Jan., Artikel-ID 105652, Seite 1-15
, volume:151
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: This communication uncovers missing fundamental elements and an expanded model of gas phase electrodeposition; a relatively new and in large parts unexplored process, which combines particle generation, transport zone and deposition zone in an interacting setup. The process enables selected area deposition of charged nanoparticles that are dispersed and transported by a carrier gas at atmospheric pressure conditions. Two key parameters have been identified: carrier gas flow rate and spark discharge power. Both parameters affect electrical current carried by charged species, nanoparticle mass, particle size and film morphology. In combination, these values enable to provide an estimate of the gas flow dependent Debye length. Together with Langmuir probe measurements of electric potential and field distribution, the transport can be described and understood. First, the transport of the charged species is dominated by the carrier gas flow. In close proximity, the transport is electric field driven. The transition region is not fixed and correlates with the electric potential profile, which is strongly dependent on the deposition rate. Considering the film morphology, the power of the discharge turns out to be the most relevant parameter. Low spark power combined with low gas flow leads to dendritic film growth. In contrast, higher spark power combined with higher gas flow produces compact layers.
ISSN: 1879-1964
DOI: 10.1016/j.jaerosci.2020.105652
Zugang: Open Access