Eintrag weiter verarbeiten

Conversionless efficient and broadband laser light diffusers for high brightness illumination applications

Gespeichert in:

Veröffentlicht in: Nature Communications extent:10; volume:11; year:2020; Vol. 11.2020, 1; Artikle number 1437, insgesamt 10 Seiten; pages:1437; number:1
Personen und Körperschaften: Schütt, Fabian (VerfasserIn), Zapf, Maximilian (VerfasserIn), Signetti, Stefano (VerfasserIn), Strobel, Julian (VerfasserIn), Krüger, Helge (VerfasserIn), Röder, Robert (VerfasserIn), Carstensen, Jürgen (VerfasserIn), Wolff, Niklas (VerfasserIn), Marx, Janik (VerfasserIn), Fiedler, Bodo (VerfasserIn), Technische Universität Hamburg (Sonstige), Technische Universität Hamburg Institut für Kunststoffe und Verbundwerkstoffe (Sonstige)
Titel: Conversionless efficient and broadband laser light diffusers for high brightness illumination applications/ Fabian Schütt, Maximilian Zapf, Stefano Signetti, Julian Strobel, Helge Krüger, Robert Röder, Jürgen Carstensen, Niklas Wolff, Janik Marx, Bodo Fiedler [und 14 andere]
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2020
Gesamtaufnahme: : Nature Communications, Vol. 11.2020, 1; Artikle number 1437, insgesamt 10 Seiten
, volume:11
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: Laser diodes are efficient light sources. However, state-of-the-art laser diode-based lighting systems rely on light-converting inorganic phosphor materials, which strongly limit the efficiency and lifetime, as well as achievable light output due to energy losses, saturation, thermal degradation, and low irradiance levels. Here, we demonstrate a macroscopically expanded, three-dimensional diffuser composed of interconnected hollow hexagonal boron nitride microtubes with nanoscopic wall-thickness, acting as an artificial solid fog, capable of withstanding ~10 times the irradiance level of remote phosphors. In contrast to phosphors, no light conversion is required as the diffuser relies solely on strong broadband (full visible range) lossless multiple light scattering events, enabled by a highly porous (>99.99%) non-absorbing nanoarchitecture, resulting in efficiencies of ~98%. This can unleash the potential of lasers for high-brightness lighting applications, such as automotive headlights, projection technology or lighting for large spaces.
Beschreibung: Sonstige Körperschaft: Technische Universität Hamburg
Sonstige Körperschaft: Technische Universität Hamburg, Institut für Kunststoffe und Verbundwerkstoffe
Umfang: Illustrationen, Diagramme
10
ISSN: 2041-1723
DOI: 10.15480/882.2734