Eintrag weiter verarbeiten

Drift stability of HyStOH semi-submersible supported by airfoil shaped structures

Gespeichert in:

Veröffentlicht in: Journal of physics / Conference Series Vol. 1222, 2019, Article number 012025, insgesamt 11 Seiten
Personen und Körperschaften: Manjock, Andreas (VerfasserIn), Netzband, Stefan (VerfasserIn), Technische Universität Hamburg (Sonstige), Technische Universität Hamburg Institut für Fluiddynamik und Schiffstheorie (Sonstige)
Titel: Drift stability of HyStOH semi-submersible supported by airfoil shaped structures/ A. Manjock and S. Netzband
Format: E-Book-Kapitel
Sprache: Englisch
veröffentlicht:
2019
Gesamtaufnahme: : Journal of physics / Conference Series, Vol. 1222, 2019, Article number 012025, insgesamt 11 Seiten
, volume:1222
Quelle: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Details
Zusammenfassung: This study presents the results of the German research project HyStOH funded by German Federal Ministry of Economic Affairs and Energy (BMWi). The project consortium of German universities, wind turbine designers, wind farm developers and certification bodies design a novel semi-submersible steel structure with a single point mooring and self-aligning capabilities. The tower, which carries a 6 MW two-bladed downwind turbine, has an airfoil shaped cover, which supports the self-alignment of the full structure towards the main wind direction. The downwind operating wind turbine in combination with the lift force generating tower enables a passive yaw system acting against hydrodynamical impacts from waves and currents. Simulations in time domain applying the fully coupled aero-hydro-servo-elastic code Bladed-4.8 demonstrate the drift sensitivity and the self-aligning capabilities of the HyStOH design. The hydrodynamic coefficients for the simulations have been adjusted by calculations with an 1:1 model of the panel code panMARE, developed by Technical University of Hamburg-Harburg. The motivation of this analysis is to capture the complex coupled motions of an innovative FOWT by numerical simulation tools [1]. The analysis presents dynamic simulations of the HyStOH design operating in turbulent wind and irregular sea state with special focus on the yaw drift behaviour of the FOWT. The sensitivity study of yaw drift is based on numerous variations of wind-wave-current misalignments during normal operation. The results of the simulations demonstrate the weathervane capabilities of the airfoil shaped structures.
Beschreibung: Sonstige Körperschaft: Technische Universität Hamburg
Sonstige Körperschaft: Technische Universität Hamburg, Institut für Fluiddynamik und Schiffstheorie
Umfang: Illustrationen, Diagramme
11
ISSN: 1742-6596
DOI: 10.15480/882.2293