Further processing options

Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

Saved in:

Published in: Nature Communications 7(2016), Seite 11809
Authors and Corporations: Dyachenko, Pavel N. (Author), Molesky, Sean (Author), Petrov, Alexander (Author), Störmer, Michael (Author), Krekeler, Tobias (Author), Lang, Slawa (Author), Ritter, Martin (Author), Jacob, Zubin (Author), Eich, Manfred (Author), Technische Universität Hamburg (Other, Sonstige Körperschaft), Technische Universität Hamburg Institut für Optische und Elektronische Materialien (Other, Sonstige Körperschaft), Technische Universität Hamburg Betriebseinheit Elektronenmikroskopie BEEM (Other, Sonstige Körperschaft), SFB 986 Maßgeschneiderte Multiskalige Materialsysteme M3 (Other, Sonstige Körperschaft)
Title: Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions/ P. N. Dyachenko, S. Molesky, A. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob & M. Eich
Type of Resource: E-Book Component Part
Language: English
published:
2016
Series: : Nature Communications, 7(2016), Seite 11809
, volume:7
Source: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Description
Abstract: Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C.
ISSN: 2041-1723
DOI: 10.1038%2Fncomms11809